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Abstract

Pre-surgical mapping has become a crucial tool in the preparation and planning for
brain tumor resection since the development of widely available non-invasive imag-
ing technologies like functional magnetic resonance imaging (fMRI) and magnetoen-
cephalography (MEG). Strategies for dealing with single-subject analysis are key to
overcome issues surrounding individual variability and inter-rater reliability. In this
thesis, a receiver operating characteristic reliability (ROC-r) framework for evaluating
and optimizing the reliability of pre-surgical mapping is developed and implemented
in a variety of applications. ROC-r allows for fully automated, yet individualized
processing of single-subject data, directly addressing both the issues of individual
variability and inter-rater reliability for fMRI and MEG.

A series of four manuscripts form the foundation of this thesis. The first, “Thresh-
olds in fMRI studies: Reliable for single subjects?”, shows the impact of individual
variability on the reliability of fMRI activation maps, and demonstrates the use of
ROC-r for evaluating reliability and selecting activation thresholds. The second pa-
per, “Fully automated quality assurance and localization of volumetric MEG for pre-
surgical mapping”, establishes the use of ROC-r for quality assurance and automated
localization in MEG. The third study, “Improving fMRI reliability in pre-surgical
mapping for brain tumors”, shows the primary clinical application of ROC-r in pre-
surgical mapping. This paper demonstrates that although patient data are less re-
liable than controls, this can be compensated for by optimization of pre-processing
pipelines. Furthermore, this manuscript compared the fMRI results to cortical stimu-
lation mapping, showing that more reliable datasets were better at identifying critical
eloquent brain regions. In the fourth and final manuscript, “A unified framework to
optimize fMRI and MEG processing for push-button pre-surgical mapping”, we explic-
itly evaluate ROC-r as a unified framework for push-button individualized analysis
of fMRI and MEG data.

Overall, this thesis demonstrates that ROC-r enhances the reliability of pre-
surgical mapping by both fMRI and MEG, by providing quantitative measures for
selecting reliable pre-processing pipelines, and determining data-driven thresholds for
localizing reliable activation foci. The ROC-r method improves pre-surgical map-
ping capabilities by introducing clinically relevant quality assurance parameters and
facilitating push-button production of reliable activation maps.
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Chapter 1

Introduction

This thesis examines the challenges of pre-surgical functional mapping by functional

MRI (fMRI) and magnetoencephalography (MEG), and in particular addresses the

difficulties associated with single-subject analyses. Pre-surgical mapping is increas-

ingly used to obtain patient-specific information on the location of critical functional

zones, in order to provide insights into the risk/benefit tradeoffs of surgical interven-

tion. The production of robust activation maps and the reduction of subjectivity in

data processing are vital in order to consistently provide the best possible pre-surgical

information. Three significant challenges in implementing a pre-surgical mapping pro-

gram are:

• Identifying data quality issues

• Selecting data processing pipelines

• Setting activation thresholds

This thesis demonstrates a novel method of receiver operating characteristic re-

liability (ROC-r) analysis for robust and automated pre-surgical mapping for brain

tumor surgery. The use of ROC-r addresses each of these three challenges by gener-

ating quantitative quality assurance parameters, optimizing the pre-processing steps

used to produce functional maps, and providing data-driven thresholding of the re-

sulting images. In order to understand the context of the capabilities of ROC-r, a

brief introduction to pre-surgical mapping will be given, and motivation for the need

for an automated yet individualized approach to image production will be presented.

This will be followed in chapter 2 by a discussion of some of the key theoretical under-

pinnings of fMRI and MEG mapping, along with a detailed description of the ROC-r

algorithm. Chapter 3 will demonstrate the application of ROC-r analysis to fMRI

data, and a comparison to other overlap-based analyses. Chapter 4 outlines the appli-

cation of ROC-r for MEG processing, with a comparison to equivalent current dipole

1
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localization for validation. In chapter 5, a patient cohort is examined to demonstrate

how reliability improvements translate into improved pre-surgical localization. Fi-

nally, chapter 6 explicitly shows that ROC-r can be used to optimize pre-processing

pipelines and automatically select activation thresholds using a unified approach for

fMRI and MEG.

1.1 Surgical Treatment of Brain Tumors

Surgical resection is one of the primary treatment options for brain tumors, along with

radiation therapy and chemotherapy. Resection provides immediate benefits in terms

of symptom control, especially in rapidly growing tumors, by reducing intracranial

pressure through debulking [1, 2]. Surgical treatment also provides the opportunity

for tumor biopsy, providing vital histological information. Additionally, tumors often

contain hypoxic cells with inadequate vascular supply, which respond poorly to radia-

tion and chemotherapy, and removal of bulk tumor can therefore increase the efficacy

of other treatment options. Most importantly, complete surgical resection correlates

with increased survival times compared to partial resection or biopsy alone [1–5].

Excision of brain tumors becomes more challenging when located in or next to

eloquent cortex (i.e. critical functional zones), which may be the case for more than

half of all tumors [6]. Surgeons must therefore balance the desire to achieve gross total

resection with the need to respect critical cortical structures and avoid post-operative

morbidity. The primary tool at a surgeon’s disposal in these cases is direct electrical

stimulation of the cortex (i.e. cortical stimulation or CS). Popularized by Wilder

Penfield and colleagues in the mid 20th century [7–9], cortical stimulation can be

used to produce involuntary motor responses, elicit somatic sensations, or temporarily

disrupt language functions. The intraoperative mapping of brain functions afforded

by CS increases the ability to achieve gross total resection with minimal post-operative

deficits [10, 11].

While cortical stimulation remains the gold standard for individualized functional

mapping [3], there are several obvious drawbacks to this technique. Firstly, CS is

unavailable until the time of surgery, rendering it unsuitable for pre-operative plan-

ning or post-operative assessment. CS is also clearly unethical for research studies in
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healthy controls, restricting our knowledge of its effects in humans to diseased pop-

ulations. Even in patients, CS requires highly cooperative individuals, may extend

operating room times, and comes with a risk of inducing seizures [12]. Furthermore,

it has recently been argued that the effects of CS are more complex than generally ac-

knowledged, including current spread, potentially distant remote effects, and complex

behavioural responses [13]. Moreover, large areas of the cerebrum can not be mapped

by cortical stimulation, which is not typically able to map sites deep to the cortex, or

areas not exposed by the craniotomy. Nonetheless, CS mapping is indispensable for

avoiding post-operative morbidity in the context of significant individual variability of

functional anatomy, especially in the presence of potential reorganization in response

to pathology [11, 13,14].

1.2 Pre-Surgical Mapping

In the last few decades, potential non-invasive alternatives to CS have arisen in the

form of functional magnetic resonance imaging (fMRI) and magnetoencephalography

(MEG). Functional MRI was first demonstrated by Ogawa et al. (Figure 1.1) [15],

and has generated an incredible level of interest both from the neuroscience and

clinical communities, due to its ability to generate high resolution images of brain

function [16]. Modern MEG scanners, with large arrays of sensors that provide whole-

brain coverage and millisecond temporal resolution, appeared around the same time

as the first fMRI experiments (Figure 1.2) [17]. Other functional mapping techniques

like electroencephalography (EEG) or positron emission tomography (PET) are also

available, but are outside the scope of this thesis.

The advent of non-invasive functional imaging has revolutionized the practice of

pre-surgical mapping. While both MEG and fMRI have been demonstrated exten-

sively for pre-surgical mapping, MEG has not achieved the same popularity as fMRI

for pre-surgical mapping. This is likely due to the lesser availability of MEG scanners

as compared to MRI machines, as MRI scanners are ubiquitous due to their anatom-

ical imaging capabilities. In any case, both fMRI and MEG offer non-invasive means

to perform whole-brain functional mapping. This confers the advantages of being

safe, repeatable, and acceptable for use in research studies on healthy controls.
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Figure 1.1: The 4 Tesla Varian fMRI scanner used in this thesis (left), a typical raw
fMRI signal for a single task-responding voxel (middle), and the resulting activation
map produced by a finger tapping task (right).

Figure 1.2: The 306-channel Elekta MEG scanner used in this thesis (left), typical
accumulated sensor-level data (middle), and the resulting activation map produced
by median nerve stimulation (right).

The use of fMRI and MEG for pre-surgical mapping has been validated by com-

parisons with CS. MEG validation studies have focussed primarily on somatosensory

mapping [18–30], along with a number of studies on motor mapping [24, 28, 30–33],

and relatively few for language mapping protocols [34,35]. For fMRI, the majority of

comparisons with CS have focussed on motor [29,36–46] and language [37,42,44,47–54]

mapping, with less attention to somatosensory localization [55].

The agreement between the non-invasive mapping modalities and CS is highest for

simple functions like primary sensory and motor, whereas for language localization

the results are more equivocal. For example, motor mapping by fMRI can achieve
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92% sensitivity [43], with lower bounds around 77% [45]. MEG can obtain very

high sensitivity (98%) and specificity (94%) [31] for sensorimotor mapping, with up

to 77% of MEG localizations being within 3 mm of CS locations [25]. However,

larger discrepancies have been reported, in some cases greater than 12 mm on average

[27]. Importantly, the MEG detection rate was unaffected by the presence of tumors

[31], whereas fMRI signal is known to be suppressed near high-grade gliomas [56].

Korvenoja et al. found that MEG was more sensitive than fMRI for mapping the

sensorimotor cortex, but notably used sensory mapping for MEG and a motor task

for fMRI [29]. A recent report argues that CS remains a more reliable tool than fMRI

for mapping the primary motor cortex, due to potential false negatives by fMRI [45].

Nonetheless, fMRI appears to be more reliable than anatomical MR imaging alone

for identifying the primary motor area in the presence of pathological cortex, as

demonstrated by Wengeroth et al. [46].

For language mapping, fMRI studies have shown a distinct trade-off between sen-

sitivity and specificity. For instance, Roux et al. [51] found 91-97% specificity with

59-66% sensitivity, whereas Rutten et al. [50] found high sensitivity (100%) with lower

specificity (61%). These seemingly contradictory results show that sensitivity can be

traded for specificity depending on the methodology employed. Indeed, Rutten et al.

used the conjunction of several language tasks in order to increase sensitivity, which

clearly also decreases specificity. For MEG, no comparisons of language mapping

to CS have been reported with sample sizes large enough to calculate sensitivity or

specificity, but case reports indicate high concordance with CS [34,35]. Overall, there

is considerable room for improvement of language mapping techniques in terms of

predicting the location of eloquent cortex [57].

1.3 Single-Subject Imaging

One of the greatest challenges for functional MRI and MEG in pre-surgical mapping

is performing robust imaging at the single-subject level. Single-subject imaging is

clearly needed for clinical functional mapping, as we are interested in where a partic-

ular brain function is located in an individual patient - not in making generalizations

to populations. However, single-subject mapping is difficult due to the inherently

low signal-to-noise for both fMRI and MEG (see chapter 2). This is compounded
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by artifacts associated with both intrinsic physiological signals (e.g. heart beat) or

extrinsic issues, like subject motion. Many of these issues are amplified in patient pop-

ulations, and additional issues arise with task compliance or performance associated

with impacts of pathology.

There is a wealth of pre-processing tools available for fMRI and MEG to help deal

with data quality issues or artifacts, but this places a burden on the user to determine

the best pipeline for a given data set. While it is generally accepted that motion

correction and spatial smoothing improves the reliability of fMRI maps, the impact

of other pre-processing options is less clear [58–61]. This has led to the development

of quantitative quality assurance metrics like ROC-r and NPAIRS (Nonparametric

Prediction, Activation, Influence and Reliability), which are capable of evaluating the

impact of pre-processing choices on a case-by-case basis. Previously, no analogous

tool has been available for volumetric MEG source mapping, although goodness-of-fit

parameters are routinely used to determine the quality of MEG dipole localizations,

and automated processing of sensor level MEG data has been demonstrated [62, 63].

Even using individualized pre-processing strategies, the issue of thresholding func-

tional maps to reveal the task-related areas is a significant challenge at the single-

subject level. While threshold strategies for multiple-comparison control in group

level analyses are well developed [64–67], these methods are not flexible enough to

accommodate the significant inter-individual differences in activation. Even within

individuals, significant variations in activation strength can be seen from run to run,

including well known habituation effects. ROC-r provides an alternative method of

individualized, data-driven thresholding by enforcing requirements on spatial relia-

bility and placing minimal assumptions on the underlying data distributions.

ROC-r was developed for data quality assessment, pipeline optimization, and

threshold selection based on spatial reliability of activation maps. Because this

method operates on the final product of the pre-surgical mapping process (i.e. ac-

tivation maps), and because the activation map is the common link between fMRI

and MEG source imaging, ROC-r provides a unified approach to optimizing both

modalities.
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1.4 Research Objectives

In this thesis, we will demonstrate the utility of ROC-r across a variety of experimental

conditions. We will convey the importance of taking an individualized approach to the

analysis of pre-surgical mapping data, in order to produce the most reliable results.

ROC-r will be shown to provide effective control of data quality for both MEG and

fMRI, and the capabilities of this approach will be demonstrated in situ for pre-

surgical mapping in patients with brain tumors. This thesis will consist primarily of

a series of four manuscripts, addressing the following research objectives:

• Manuscript 1: Demonstrate validity of ROC-r as a measure of fMRI image

reproducibility that is sensitive to individual variability (Ch. 3).

• Manuscript 2: Demonstrate the application of ROC-r for quality assurance and

automated localization of volumetric MEG maps (Ch. 4).

• Manuscript 3: Show that ROC-r quality assurance and optimization improves

the ability of pre-surgical fMRI to localize critical eloquent cortex (Ch. 5).

• Manuscript 4: Illustrate ROC-r as a common framework for processing opti-

mization and automated thresholding of both MEG and fMRI images (Ch. 6).

Throughout these manuscripts, the themes of data quality assessment, optimiza-

tion of pre-processing pipelines, and automated thresholding for the production of

robust functional maps will be stressed.



Chapter 2

Theory

In this chapter, a brief discussion of the theoretical underpinnings of fMRI and MEG

mapping will be presented. The generation of the relevant signals will be discussed,

and the basic steps involved in the formation of statistical maps are outlined. A

summary of the available techniques for thresholding statistical maps will be given,

and finally a detailed description of the motivation behind and implementation of the

ROC-r framework is presented.

2.1 Functional MRI

2.1.1 Signal Generation

Magnetic resonance imaging (MRI) is a non-invasive imaging technique, based on

the interaction of the magnetic dipole moment of (typically hydrogen) nuclei in the

body with a strong static magnetic field ( �B0). The torque experienced by the nuclear

magnetic moment in this field leads to precession at the ‘Larmor frequency’ (ω0),

given by:

ω0 = γB0 (2.1)

where γ is the gyromagnetic ratio (42.6 MHz/Telsa for Hydrogen). Macroscopically,

this equilibrium state does not create an observable signal, as the bulk magnetiza-

tion ( �M) is constant in time due to a lack of (transverse) phase coherence of the

precessing dipoles. The application of an orthogonal magnetic field in the form of a

radio-frequency pulse tips this bulk magnetization vector into the transverse plane,

and introduces the necessary phase coherence. This magnetization then produces

an observable signal as it rotates and relaxes back to its equilibrium state (Figure

2.1). This relaxation is described by a longitudinal relaxation rate governing return

to equilibrium (R1), and an apparent rate of signal loss (R2*) due to loss of transverse

phase coherence.

8
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Figure 2.1: MR relaxation. After a radio-frequency excitation pulse, the magnetiza-
tion vector �M is shown in the transverse plane. This proceeds to precess and relax
back towards the equilibrium (longitudinal) state. The rate of return to equilibrium
(R1) is typically longer than the rate of signal loss (R2*) due to loss of transverse
phase coherence.

Functional MRI exploits endogenous contrast produced by the sensitivity of MR

relaxation to the molecular environment of hydrogen protons. The most common

fMRI techniques use the Blood Oxygen Level Dependent (BOLD) contrast generation

first described by Ogawa et al. [15]. BOLD contrasts arises from changes in the trans-

verse relaxation rate (R2*) of the MR signal caused by changes in the relative concen-

tration of oxygenated and deoxygenated hemoglobin. Deoxygenated hemoglobin is

paramagnetic, and increases the local magnetic susceptibility of blood when present.

This in turn induces local field offsets compared to the static field around an idealized

cylindrical blood vessel, (ΔB) given by:

ΔB = 2πΔχ(1− Y )B0sin
2(θ)

(a
r

)2

cos(2φ) (2.2)

outside of the blood vessel, where Δχ is the susceptibility difference between fully oxy-

genated and deoxygenated blood, (1-Y) is the fraction of deoxygenated hemoglobin

in the blood, B0 is the main magnetic field, θ is the angle of the blood vessel to the

main magnetic field, a is the radius of the vessel, r is the distance from the center of

the vessel, and φ is the polar angle about the vessel (Figure 2.2a). Inside the blood



10

vessel, a constant field offset of:

ΔB = 2πΔχ(1− Y )B0(3cos
2(θ)− 1)/3 (2.3)

is present (Figure 2.2). These intra-voxel field inhomogeneities lead to more rapid

transverse relaxation of the MR signal as individual spins gain or lose phase due to

precession in their local magnetic field.

The physiological links between BOLD contrast and brain function are complex

[69], but essentially relate to increases in cerebral blood volume (CBV), cerebral blood

flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) following

neuronal activity. The change in deoxyhemoglobin concentration inside a vessel (ΔY )

can be shown to be:

ΔY = (1− Y )

(
ΔCBF/CBF −ΔCMRO2/CMRO2

ΔCBF/CBF + 1

)
(2.4)

where Y is the baseline deoxyhemoglobin concentration. To some degree, these effects

counteract each other as increases in CBV and CMRO2 both increase local deoxyhe-

moglobin concentration, whereas increased CBF washes away deoxyhemoglobin, re-

placing it with fresh oxygenated blood. The dominating response is typically the CBF

increase, which leads to a seemingly paradoxical overall increase in local blood oxy-

genation following neuronal activity (and therefore increased signal on a R2* weighted

image) [68].

The time-course of the BOLD response to neural activity is referred to as the

hemodynamic response function (HRF). The HRF is important to consider as it is

needed for the analysis of fMRI images (Figure 2.3), and typically limits the temporal

resolution of fMRI experiments. The main BOLD response, corresponding to the

peak in the HRF, occurs approximately 5 seconds post-stimulus, with a full-width-

half-maximum of 4-5 seconds. This is usually followed by a post-stimulus undershoot,

which may take tens of seconds to fully return to baseline. An initial negative BOLD

dip is sometimes observed as the CMRO2 changes preceding the CBF and CBV

responses, but is not robust enough to be used for functional mapping. The temporal

sampling achieved in typical whole-brain fMRI studies (1-3 seconds) is thus sufficient

to sample the main HRF components.
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Figure 2.2: a) Idealized blood vessel represented as a uniform cylinder of radius ‘a’,
at an angle (θ) to the static magnetic field (B0). b) Field offsets in and around the
vessel caused by magnetic susceptibility of deoxygenated hemoglobin in the blood.
Adapted from [68].
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2.1.2 Image Formation

Typical fMRI analysis pipelines include a variety of pre-processing steps including

rigid-body co-registration of the fMRI images to initially correct for motion within the

scanning session. Affine transformations are typically employed using the anatomical

image as a template, in order to correct for geometric distortion. High-pass filtering

is commonly performed to remove low-frequency drift from the fMRI signal, although

this step can alternatively be incorporated into the general linear model (GLM, see

below). Image smoothing is also commonly performed in the pre-processing pipeline,

in order to increase the power for detection of activation, albeit at the cost of spatial

resolution.

At the heart of fMRI analysis is the general linear model (Figure 2.3). For the

GLM approach, the expected fMRI time-course is modelled by the convolution of a

canonical HRF with the experimental timing (e.g. the stimuli, responses, or some

contrast of predictors). The recorded voxel timecourse (ya(t)) of an active voxel is

assumed to follow the predicted timecourse (f(t)), plus additive effects of noise (n(t)),

polynomial baseline variation (Pa(t)), and any other modelled sources of signal (m(t),

e.g. motion):

ya(t) = α0f(t) + Pa(t) +m(t) + n(t) (2.5)

whereas an inactive voxel timecourse (yi(t)) will not exhibit any task-related signal:

yi(t) = Pi(t) +m(t) + n(t) (2.6)

where α0 estimates the magnitude of the task regressor in that particular voxel, and

the polynomial baseline function (Pi(t)) is not necessarily the same as in the active

case (although in practice the difference is typically small). By finding the value of

α0 that minimizes the sum-of-squares residuals, the magnitude of the task response

is estimated for every voxel. Finally, a goodness-of-fit statistic for each voxel is

calculated, for instance, by taking the ratio of the effect size (α0) to a measure of the

residual error:

t∗ =
α

MSE(XTX)−1
(2.7)

Where MSE is the mean squared residual error, and X is the design matrix, specified
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by the stimulus timing and nuisance regressors. In this work, the t- or z-statistic is

used.

There are additional pre-processing options that can be implemented at the time

of the GLM analysis. As alluded to previously, one of these options is the number of

polynomial terms included in the baseline model of the GLM. Typically this is limited

to quadratic or cubic terms, depending on the length of the fMRI experiment. The

translation and rotation timecourses determined during rigid body motion correction

are also frequently incorporated into the GLM model, a process called motion pa-

rameter regression (MPR). This procedure can be used to account for residual signal

variation that correlates with subject motion, however it must be applied with caution

as even small amounts of task-correlated motion may cause MPR to suppress fMRI

sensitivity dramatically. Finally, auto-correlation correction (ACC), or pre-whitening,

is frequently used to correct t-values for residual timecourse correlations that were

not accounted for in the original GLM.

Figure 2.3: Example setup of a general linear model. Top left: canonical hemody-
namic response function. Middle left: task block design convolved with HRF. Bottom
left: polynomial terms for baseline model. Right: Voxel displaying high correlation
to the GLM task model. Raw timecourse in yellow, fit voxel response in pink.
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2.2 Magnetoencephalography

2.2.1 Signal Generation

Magnetoencephalography is also a non-invasive method of detecting brain function,

but unlike fMRI, it is a passive recording technique. MEG measures the natural mag-

netic fields resulting from the coherent activity of small patches of cortex containing

millions of neurons. The field strengths produced are incredibly small (tens to hun-

dreds of femtoTesla, or about one billionth of the earth’s field). It is thus necessary

to perform MEG experiments in magnetically shielded environments, in order to sup-

press signals originating from outside the body. Even still, in typical experiments it

is necessary to average the responses to many stimuli together in order to achieve

sufficient signal-to-noise, producing an ‘evoked response’ (Figure 2.4).

Figure 2.4: Representative MEG data from median nerve stimulation. a) Raw data
epochs. The evoked response is not visible in single epochs. b) Averaged evoked
response for the planar gradiometers (top) and axial magnetometers (bottom). c)
Sensor topographies for the main deflection in the evoked response at 36 ms. The
dipolar pattern is obvious on the magnetometers, corresponding to a source in the
right parietal lobe.

The MEG signal arises primarily from excitatory post-synaptic input to the den-

drites of cortical neurons [70] (Figure 2.5). Excitatory input causes small current

inflow to the dendrites, which can be modelled as a current dipole. The coherent

summation of many of these microscopic post-synaptic potentials produces the ob-

served evoked response, and constitutes what is called the primary current source.
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As the brain is by nature an electrically conductive medium, there are passive macro-

scopic ohmic return currents that ensure no net build-up of charge occurs. As we

are interested in imaging only the primary currents, it is useful to formalize this

distinction:

�J(�r) = �Jp(�r) + σ(�r) �E(�r) (2.8)

where �J(�r) is the total current density, �Jp(�r) is the primary current, σ(�r) is the

conductivity of the medium, and �E(�r) is the macroscopic electric field.

Figure 2.5: Diagram of the generation of the MEG signal. a) The MEG signal
arises from post-synaptic potentials of cortical neurons. b) pyramidal neurons receive
various inputs (green) along the dendrites, which propagate towards the cell body
(red). c) the post-synaptic dendrite opens ion channels, allowing an influx of charge,
and causing the primary current flow (yellow). Return currents (blue) ensure charge
equilibrium. d) the primary current source (yellow) creates magnetic field that can
be measured outside the head.

In order to localize the primary current density, it is necessary to understand the

signal that is induced by both the primary and return currents, beginning with the

magnetic field produced by these currents (the forward solution, Figure 2.6). It can
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be shown that the return currents only contribute to the measured magnetic field

where there is a gradient in electrical conductivity. Typically the head is assumed

to be a piecewise homogeneous conductor, in which case the magnetic field can be

shown to be:

�B(�r) = �Bp(�r) +
μ0

4π

∑
ij

(σi − σj)

∫
Sij

V (�r′)
�R

R3
× �dS ′

ij (2.9)

where �Bp(�r) is the field caused by the primary current, μ0 is the permeability of

free space, Sij is the surface between compartments ‘i’ and ‘j’, V (�r′) is the electric

potential, and �R is the vector from a position on the surface (�r′) to the point of mea-

surement (�r). This formula allows for the calculation of the magnetic field produced

at the sensors by an arbitrary primary current source by calculating the potentials

on compartment boundary surfaces. This procedure is commonly referred to as the

boundary element method (BEM) [71]. Alternatively, a homogeneous sphere model

can be employed, which is computationally simpler. The homogeneous sphere model

gives adequate results in certain situations, but should not be used when highly ac-

curate localization is required [72].

A closely related quantity to the forward solution is the lead field (�L(�r)), which

describes the sensitivity of the MEG detectors to a unit dipole at location �r. This

formalism thus includes the orientation and type of MEG detector used in order to

relate the fields produced by the dipoles to the signal induced on the sensors. By

summing over all source locations in the brain volume, the MEG signal (m) for an

arbitrary source configuration can be calculated:

m =

∫
�L(�r′) · �J(�r′)d3r′ (2.10)

In practice, the leadfield is a discretized matrix L, relating ‘m’ sensor readings to ‘n’

discrete brain locations.

2.2.2 Image Formation

Prior to image formation, there are an array of pre-processing steps that are com-

monly performed on MEG data. Removal of non-biomagnetic field components is



17

Figure 2.6: Normal component of the magnetic fields produced by a unit current
dipole (1 Am) located in a cortical sulcus between the two field extrema (pointed in
the anterior direction, tangential to the nearby head surface).

accomplished using either signal space separation techniques (SSS or tSSS), or refer-

ence sensor approaches. The raw data are usually band-pass filtered (e.g. 1-70 Hz),

in order to restrict the spectral content to the range of typical brain signals. Down-

sampling is frequently employed in order to reduce computational load. Independent

component analysis (ICA) or other decomposition techniques (e.g. SSS) can also be

used in order to separate the MEG signals into additive components. By correlat-

ing these components with known sources of artifact (e.g. eye blink or heart beat

recordings), sources of noise can be pre-emptively removed from the raw data.

Many inverse solution / source mapping techniques are available for MEG. The

earliest and most thoroughly investigated is the equivalent current dipole (ECD) [70],

in which a single dipole is placed at the location and orientation that explains as

much as possible of the observed field pattern. This point source technique is robust

in many cases, but when distributed activations are expected, require the a-priori

specification of the number of dipoles to model. For this reason, ‘dipole scanning’

techniques have been introduced, in which the dipolar source strength is estimated



18

independently for each location in a pre-defined grid.

Dipole scanning techniques find a unique solution to the MEG signal equation:

M = LY+ ε (2.11)

independently for each spatial location on the source reconstruction grid (where M

is the measured signal across the sensors, L is the discretized lead field, Y is the grid

of source strengths, and ε is additive noise). Beamformers are a particularly popular

form of dipole scanning techniques, in which the amount of cross-talk to each location

on the mapping grid is minimized (e.g. by enforcing a minimum variance constraint,

or by increasingly penalizing contributions from other spatial locations based on their

euclidean distance to the current point of interest) [73, 74]. While beamformers are

not strictly speaking imaging techniques (as the extent of a beamformer ‘activation’

has no well defined meaning), they do produce a 3D estimate of source strengths,

which in many ways resembles an activation map. More formally, only the peak

locations of a beamformer map can be interpreted to represent a source localization.

Alternatively, true ‘imaging’ techniques for MEG source mapping attempt to find

a full inversion of the matrix equation 2.11 [74]. As the number of sensors (m)

is typically much less than the number of source points (n) in the reconstruction

grid, this inversion is ill-posed, and some constraints must be introduced to find a

unique solution. The most common constraints are the minimum norm or minimum

current estimates (MNE and MCE respectively) [74, 75]. In these cases the solution

with the least source power (MNE) or least total current (MCE) are found (i.e.

minimizing the �2 or �1 norm respectively). While these solutions are attractive in the

simplicity of their constraining assumptions, they typically result in very superficial

source estimates, as a weaker source near the cortical surface (and therefore the

sensors) would produce the same field as a stronger source further from the sensors.

Less surface-biased solutions can be achieved by introducing depth weighting to the

inversion matrix, or by adopting a noise-normalized approach like dynamic statistical

parametric mapping (dSPM) or standardized low resolution brain electromagnetic

tomography (sLORETA) [74, 76, 77]. In both of the latter two imaging approaches,

the noise covariance is projected to each location on the source grid, and is used to

normalize the source estimates. It has been shown that both depth weighting and
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noise normalization can reduce the surface bias of MEG imaging approaches [78].

In this thesis, MEG source mapping is performed primarily by the linearly con-

strained minimum variance (LCMV) beamformer spatial filtering approach [73]. In

general, LCMV beamformer spatial filters attempt to find a set of weights (WT
r0
)

for the sensor data that project unity power to a voxel of interest (r0), and minimal

source variance elsewhere. The output of the spatial filter (y(�r, t)):

y(�r, t) = WT
r0
(�r)m(t) (2.12)

is ideally equal to zero everywhere except the point of interest. The weights matrix

is that which minimizes the total source power (Pr0):

Pr0 = tr
(
WT

r0
CmWr0

)
(2.13)

where tr is the trace, and Cm is the covariance matrix for the data. The weights are

subject to unity gain at the point of interest:

WT
r0
Lr0 = I (2.14)

It can be shown that the minimum variance beamformer solution is:

WT
r0
= C−1

m Lr

(
LT

r C
−1
m Lr

)−1
(2.15)

and thus:

Pr0 = tr
([

LT
r0
C−1

m Lr0

]−1
)

(2.16)

This procedure is repeated for each voxel in the source space, producing a map of

source power. However, as MEG noise projects non-uniformly throughout the brain,

the source estimates must be normalized to the projected noise power (Nr0 , e.g. from

a pre-stimulus period):

Nr0 = tr
([

LT
r0
C−1

n Lr0

]−1
)

(2.17)

where Cn is the sensor noise covariance matrix. Thus the final beamformer output is
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a ‘pseudo-Z’ statistical map:

Z2
r0
=

tr
([

LT
r0
C−1

m Lr0

]−1
)

tr
([

LT
r0
C−1

n Lr0

]−1
)

=
Pr0

Nr0

(2.18)

The beamformer output may be calculated for each time-point of the evoked response

separately, in order to reconstruct dynamic (i.e. 4D) MEG source ‘images’.

2.3 Statistical Images and Thresholding

The fMRI and MEG image formation methods used in this thesis all result in sta-

tistical maps of brain activity - that is an estimate of signal strength relative to the

variance or noise at that location. The final step in taking a pre-processed functional

image and producing a fully processed activation map is thresholding the image into

active and inactive areas. This introduces a fundamental issue for functional mapping

- deciding what level of significance is appropriate for identifying active brain regions.

Simple fixed error rates approaches are insufficient, due to the large number of brain

voxels tested in typical functional mapping studies. For example, with 64x64x20 vox-

els, more than 80,000 tests are performed and a naive p < 0.05 significance threshold

would result in more than 4000 false positive voxels.

Simple multiple comparison corrections like the Bonferroni correction are not suit-

able alternatives [66, 67], as the corrected p-values (pB) assume that all voxels (V )

represent an independent test:

pB =
p

V
(2.19)

As there is some degree of spatial correlation in functional images (e.g. regions of

activity are not typically single voxels), the number of truly independent tests is much

lower, and the Bonferroni correction is overly strict. An improved approach is to use

gaussian random field (GRF) theory to estimate the image smoothness and determine

the true number of independent tests that are available [64].

An alternative strategy is to specify an acceptable false discovery rate (FDR)
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[65,79], which is the proportion of false positives (FP) amongst the active voxels:

FDR =
FP

FP + TP
(2.20)

where TP is the number of true positives. The significance level that satisfies this

criteria (pG) can be found by incrementally increasing the number of active voxels ‘i’,

and finding the maximum number of voxels for which the i’th p-value (pi) satisfies

the relation:

pG = max

{
i : pi ≤ iFDR

V

}
≤ iFDR

V
(2.21)

The FDR and GRF approaches offer some degree of data-driven adaptation, and are

widely used for group level studies. Both of these approaches are focussed on avoiding

false positives, which may not be ideal in the context of clinical functional imaging,

where false negatives are of greater concern in order to avoid incorrectly identifying

a region of cortex as being safe to resect [80].

The above approaches specifying desired p-value levels of statistical significance

all suffer from being essentially fixed-threshold techniques, which are unable to adapt

sufficiently to individual variability in activation maps. One recently developed alter-

native is the adaptive thresholding method [80], which models image histograms as

a combination of gaussian noise, and gamma activation/de-activation distributions.

This approach is flexible to different levels of activation and noise, but does not in-

corporate the rich spatial information available in imaging. For MEG, thresholding

methods based on permutation testing [81, 82] have been suggested, but in practice

manual adjustment of threshold levels are still common, as no broadly accepted proce-

dure has emerged. In general, data-driven methods are more suitable for dealing with

individual variability than fixed significance or multiple comparison based methods,

as the latter do not typically adjust to differing levels of noise or activation.

In this thesis, we present a data-driven thresholding strategy based on spatial

reliability of activation maps. This technique will be shown to provide robust thresh-

olded images for single-subject mapping. Furthermore, measuring reliability allows

for evaluation of the pre-processing choices made to produce these maps, and for

quality control of the activation images. This method of guiding functional image

formation is described in detail in the following section.
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2.4 The ROC-r Framework

2.4.1 Motivation and Background

Determining appropriate threshold levels is not the only challenge facing single-

subject functional mapping. The low signal-to-noise inherent to both fMRI and MEG

makes these techniques very sensitive to artifacts, and the quality of the resulting im-

ages is therefore highly dependent on the analysis methods employed. Unfortunately,

there is no globally appropriate combination of processing choices that will produce

the best results in all subjects. Several authors have shown the potential of ROC anal-

ysis for assessing the effect of processing choices on the resulting image quality [83–85].

In this thesis, a novel test-retest ROC-reliability framework will be introduced, and

its usefulness for single-subject functional mapping will be demonstrated.

What makes the ROC-r approach particularly well suited to handle the variabil-

ity of functional imaging, as well as the differences between fMRI and MEG data, is

that minimal assumptions are placed on the activation maps. The two basic assump-

tions of the ROC-r method are: 1) the signal intensity in the images is larger than

the noise amplitude, and 2) the signal originates from a consistent location across

replications, whereas the noise amplitudes will be randomly distributed across the

image. Being noise-normalized statistical maps, functional images implicitly satisfy

assumption one. The second assumption is typically satisfied for scanner and physio-

logical noise sources, but may be violated by some artifacts with systematic locations.

Fortuitously, sources of such artifacts tend to be easily recognized (e.g. eye blinks in

MEG data), and methods for removing them from the raw data (e.g. epoch rejection)

are widely available.

For images that meet these two assumptions, it is reasonable to assume that the

spatial reliability of the images will increase with increasing threshold, as the spu-

riously located noise will be the first voxels to be thresholded out of the activation

maps. Furthermore, once sufficient reliability is achieved, the threshold should not be

increased further, in order to maintain activation sensitivity. Thus ROC-r provides

information relevant to the selection of appropriate thresholds. It will be shown that

the ROC-r method is also inherently capable of identifying poor quality datasets in
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Figure 2.7: Demonstration of the ROC-r calculation of retest ROC curves. Left: ROC
curve for an example template image thresholded at t=3. Right: Example template
(red) and retest (blue) images for increasing retest image thresholds. Intermediate
thresholds provide the optimal test-retest overlap (purple). This color scheme will be
used extensively for showing ROC-r thresholded test-retest images.

which the above assumptions are not met, as the expected reliability versus thresh-

old behaviour will not be observed (i.e. thresholding will not improve reliability due

to lack of signal or presence of spurious artifacts). Finally, ROC-r can be used to

guide pre-processing decisions, in order to improve the spatial reliability of activation

maps. The ROC-r method is the only technique available that combines quantita-

tive quality assurance metrics, pre-processing pipeline optimization, and automated

individualized thresholding in a single package.

2.4.2 ROC-r Algorithm

The ROC-r algorithm calculates ROC curves based on the overlap of test-retest func-

tional maps as a function of image thresholds. For the ROC-r calculation, one image

(e.g. the ‘test’ image) is taken as the activation template for the ROC ‘gold standard’.

The ROC curve (Figure 2.7) is defined as a plot of the true and false positive rates

(TPR and FPR respectively), as a function of retest image threshold (t2), at a fixed
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template image threshold (t1):

TPR(t2) =
TP (t2)

TP (t2) + FN(t2)

FPR(t2) =
FP (t2)

FP (t2) + TN(t2)

(2.22)

where TP is the number of true positives (voxels active in both images, A1,2), TN

is the true negatives (voxels inactive in both images I1,2), FP is the number of false

positives (active in only the retest image A2), and FN is the number of false negatives

(active in only the template image A1). The area under the ROC curve is calculated

as a function of t1 (i.e. AUC(t1)), and used as the ROC-r indicator of retest reliability.

The number of retest thresholds evaluated should be sufficient to produce accurate

estimates of the retest ROC curves (typically ∼20 threshold levels).

The retest ROC curves are highly dependent on the choice of template thresh-

old. The ROC-r algorithm therefore explicitly evaluates the effect of the template

threshold on retest image quality, by repeating the ROC and AUC calculation for all

possible template image thresholds (Figure 2.8). This ensures that the resulting esti-

mates of image reliability are not dependent on the choice of template threshold, and

additionally allows one to determine threshold levels that produce robust template

images directly. The basic output of a ROC-r analysis is thus a plot of the retest

AUC as a function of template image threshold.

Overall reliability can be reduced to a quantitative metric for quality assurance

purposes, and for determining the best analysis pipeline for a particular dataset. The

metric of choice is the ‘reliable fraction’ (FR), which is calculated as the fraction of

the threshold range for which the activation pattern obtained is reliable (Figure 2.8):

FR =
Δtreliable

Δtreliable +Δtunreliable
(2.23)

where the criteria for reliability is for the AUC to be above the ‘mid-range’ value (i.e.

AUCmid, half way between the minimum and maximum AUC values):

AUCmid =
AUCf + AUCi

2
(2.24)
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This metric is particularly attractive as it measures how quickly the retest AUC

(i.e. reliability) increases with template image threshold, and thus how much of the

threshold range is reliable activation. For small activated regions, assuming random

uncorrelated background noise, FR is related to the image signal-to-noise ratio (SNR,

see Figure 2.9).

The ROC-r AUC plots can also be used to determine data-driven thresholds. The

approach taken in this work is to balance the desire for a high retest AUC with the

diminishing returns observed at high thresholds. This is accomplished by defining

the equivalent ‘linear-rate’ of AUC increase with threshold (AUC ′
lin) as the slope of

the line connecting the initial and final AUC values:

AUC ′
lin =

AUCf − AUCi

tf − ti
(2.25)

This provides a data-driven average rate of AUC increase with threshold (Figure

2.8). In order to balance the desire for high reliability with high sensitivity, the first

threshold for which the AUC is above the mid-range value, and the rate of change

drops below the linear-rate is identified as the ROC-r threshold. In earlier works (3)

these cut-off parameters were determined from a group AUC plot, to take advantage

Figure 2.8: The output of the ROC-r analysis is a plot of the retest area under the
curve (AUC) as a function of template image threshold (left). Overall reliability is
measured by the fraction of the threshold range for which the AUC is above the
mid-range value. The corresponding retest ROC curves for a variety of template
thresholds is shown on the right.
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of the stability provided by using the average ROC-r curves. However, in later works,

these cut-offs are calculated directly from the individual ROC-r AUC plots, to offer

greater individual adaptability. Two additional parameters can be introduced to

fine-tune the ROC-r thresholds. The first such parameter, α, is used to increase or

decrease the AUC cut-off value:

AUCthresh = α
AUCf + AUCi

2
(2.26)

A second tuning parameter, β, can be introduced to allow variation of the conserva-

tiveness of the threshold levels:

AUC ′
thresh = β

AUCf − AUCi

tf − ti
(2.27)

Normally, both α and β are set to unity, unless otherwise noted. In chapter 5, the α

and β parameters will be adjusted to increase the sensitivity of ROC-r thresholds in

a patient group.

2.4.3 Simulation

A proof of concept for the ROC-r algorithm can be accomplished using a simple sim-

ulation (Figure 2.9). In this simulation, the images are represented using a 1D signal

plus noise model. The signal was modeled by a gaussian distribution of varying full-

width-half-maxima to represent different percent activation extents. The background

noise was modelled by uncorrelated gaussian distributions of varying amplitude, to

simulate different SNR levels. The noise magnitude was additionally scaled inversely

to the amount of signal present in a given ‘voxel’, in order to represent a noise-

normalized statistical map. For each SNR and activation extent, two 1D ‘images’

were simulated and submitted to a ROC-r analysis.

The initial AUC of the resulting ROC-r curves increases with activation extent,

as a larger and larger proportion of the voxels are reliable at any threshold (Figure

2.9c). Thus the initial value of the AUC is not always 0.5, as would be expected for

an image that is predominantly noise. The initial AUC value is thus indicative of the

extent of the activation present in the images. The limiting cases of noise only images

(AUC=0.5) and identical images (AUC=1.0) are also shown. Increasing the SNR does
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Figure 2.9: Simulated 1D signal for varying percent active voxels (a) and noise magni-
tude (b), and corresponding ROC-r analyses in (c) and (d), respectively. The ROC-r
reliable fraction depends linearly on SNR, and is nearly independent of activation
extent (e). The ROC-r thresholds increase with increasing noise levels, independent
of activation extent (f).
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not change the initial AUC value, but results in faster increase in AUC with threshold

(Figure 2.9d). As a result, the reliable fraction increases with SNR, and is essentially

independent of activation extent, especially for less than smaller percentages of active

voxels (i.e. <=10%). Likewise, the optimal threshold is independent of activation

extent, but adapts for increasing noise levels, in order to isolate the reliable signal.

2.4.4 Repeatability, Reliability, and Accuracy

The ROC-r method is based on assessment of the test-retest reliability of functional

maps. It should thus be emphasized that throughout this thesis, the term reliability

is thus used in the same conceptual sense as repeatability or reproducibility of the

functional images. It should also be noted that the repeatability of a test does not

ensure validity of the result, although it can be considered a necessary - if not always

sufficient - condition for the usefulness of a measurement. However, in general, a test

is only considered valid if it is both repeatable and accurate.

While repeatability of functional imaging is relatively easy to assess, the accuracy

of these maps is much more difficult to define, as there is no true gold standard

measure for localization of brain function. In this thesis, several surrogates are used

as standards for assessing the accuracy of ROC-r results. In cases where individual

results are expected to be relatively homogenous, a group map can be used as a

form of baseline expectations. In this case, accuracy is operationally defined as the

closeness of individual results to the mean. In other cases, an established method

for localization is available, and can be used to validate the ROC-r results, such as

equivalent current dipoles for MEG. Finally, for the patient studies in this thesis,

cortical stimulation is used as the gold standard for localization of brain function.

While cortical stimulation has its drawbacks as a comparator for volumetric image-

based methods, it is able to identify critical functional regions that must be spared

during surgery, and is routinely used intraoperatively.

2.4.5 Summary

The ROC-r algorithm provides a quantitative method of assessing the reliability of

activation maps. We will show that ROC-r provides a valuable tool in three distinct
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roles for individual functional mapping: as a quality assurance indicator, for select-

ing of optimal pre-processing pipelines, and for determining data-driven thresholds.

Because it only requires the activation maps as input, it is equally well suited to

MEG and fMRI source mapping and providing a unified framework for push-button

processing of both modalities. This thesis will demonstrate that these qualities pro-

vide enhanced pre-surgical mapping characteristics, by ensuring that the best possible

results are produced from the available data, on an individualized basis.
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3.1 Motivation

The following manuscript examines how the reliability of individual level mapping

depends on thresholding. This manuscript introduces the ROC-r method, and com-

pares it to an established method of evaluating test-retest overlap/reliability. This

paper shows that production of reliable images requires data-driven thresholding, as

there is a large variability in image reliability at a given threshold both between and

within subjects. The ROC-r method of threshold selection is shown to control for

image reliability effectively, and the potential for using ROC-r to guide pre-processing

decisions to maximize the quality of activation maps is established. This manuscript

lays the groundwork for the ROC-r method.

30
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3.2 Abstract

Many studies have investigated test-retest reliability of active voxel classification for

fMRI, which is increasingly important for emerging clinical applications. The im-

plicit impact of voxel-wise thresholding on this type of reliability has previously been

under-appreciated. This has had two detrimental effects: 1) reliability studies use dif-

ferent fixed thresholds, making comparison of results challenging; 2) typical studies

do not assess reliability at the individual level, which could provide information for

selecting activation thresholds. To show the limitations of traditional fixed-threshold

approaches, we investigated the threshold dependence of fMRI reliability measures,

with the goal of developing an automated threshold selection routine. For this pur-

pose, we demonstrated threshold dependence of both novel (ROC-reliability or ROC-

r) and established (Rombouts overlap or RR) reliability measures. Both methods

rely minimally on statistical assumptions, and provide a data-driven summary of

the threshold-reliability relationship. We applied these methods to data from eight

subjects performing a simple finger tapping task across repeated fMRI sessions. We

showed that the reliability measures varied dramatically with threshold. This vari-

ation depended strongly on the individual tested. Finally, we demonstrated novel

procedures using ROC-r and overlap analysis to optimize thresholds on a case-by-

case basis. Ultimately, a method to determine robust individual-level activation maps

represents a critical advance for fMRI as a diagnostic tool.

3.3 Introduction

3.3.1 Background

Functional MRI has emerged as a major diagnostic tool in human neuroscience. Most

functional MRI maps reflect the statistical goodness-of-fit of a predicted response

model to the signal measured in each voxel [86]. This process is used to overcome

the noisy nature of the fMRI signal, but is hampered by the difficulty in defining

an appropriate statistical threshold [64–67, 87]. In particular, differences between

tasks, individuals, and scanners may not be properly accounted for in the statistical

models used in fixed-threshold techniques (i.e. with pre-specified p-value levels) [88].

These problems are only made worse by sources of physiological noise and task-related
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artifacts. As the threshold process is intended to separate the ‘active’ from ‘inactive’

voxels, it will clearly impact the reliability of the observed activation [89,90].

Given that we cannot easily determine if a voxel is ‘truly’ active or inactive,

measuring reliability through repeated scanning (e.g. within or between sessions) is

one possible way to increase our confidence in the activation maps [39,91]. However,

there are many reliability measures to choose from [92], and each method is sensitive to

different aspects of fMRI data. Furthermore, each method will be affected differently

by decisions made during analysis (e.g. response model selection, spatial and temporal

smoothing, etc: [84, 93]).

It is useful to divide the available approaches into two general categories: 1) mag-

nitude and 2) classification reliability. Whereas reliability of activation strength or

magnitude is investigated at the voxel level (e.g. with t-value scatter plots [94–98], or

intra-class correlation coefficients [97–102]), reliability of active/inactive classification

is assessed at the image level after application of a significance threshold. As we are

principally interested in what effect the threshold has on fMRI mapping, we will focus

on the latter, hereafter referred to as classification reliability.

Classification reliability has been shown to differ greatly between individuals [98,

103]. Despite this high individual variability, significant differences have been found

between select patient and control groups [104]. Reliability has been shown to vary

with functional tasks [105] and brain regions [97], two issues that are inevitably

interrelated [97,106]. Task-based and resting state fMRI can achieve similar reliability

results [107], although task-based designs appear to be more robust when rest periods,

rather than control states, are used as baseline [98]. The classification reliability also

varies with threshold used to define the active/inactive voxels. This dependence is

commonly characterized by either the test-retest true and false positive rates [88], or

test-retest overlap coefficients [103].

We have developed data-driven methods to calculate classification reliability for

individual subjects, using a test-retest framework. These methods alleviate the need

for many task replications to accurately fit parameters in the traditional model-based

approaches [108]. Our methods are designed to overcome large inter-individual dif-

ferences in reliability that are observed when fixed thresholds are used in individual

subjects. We will show that meaningful fMRI maps can be produced by optimizing
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reliability of active/inactive voxel classification at the individual level.

3.3.2 Classification Reliability

The two most common ways to assess classification reliability for fMRI are overlap

coefficients [97, 103, 105, 106, 109–114] and receiver operating characteristic (ROC)

analysis [85, 88, 104,107,108,115]. These two approaches differ in several ways.

Overlap Coefficients

Overlap coefficients are calculated directly from two thresholded activation maps.

Therefore they are empirical measures of reliability. The two most common overlap

indices are the Rombouts coefficient (‘RR’) [103], and the Jaccard overlap coefficient

(‘RJ ’) [113,116]. RR is the ratio of the number of voxels active on both replications to

the average number active on each replication. RJ is the proportion of voxels active in

either replication that are active in both replications. Both RR and RJ vary between

0 and 1, and are particularly attractive reliability metrics because of their simplicity.

In this paper we will focus on RR, as it is the more popular of the two metrics.

Overlap coefficients depend on the threshold used to classify active and inactive

voxels [89, 90]. Rombouts et al. showed that the overlap coefficient is high at very

low thresholds, and low at very high thresholds [89], as expected. While the report of

Rombouts et al. demonstrated a local maximum in overlap at intermediate thresh-

olds, a later study [90] did not reproduce this result. The variation in overlap was

substantial in both studies: 0.0 to 0.7 in Rombouts et al. [89], and 0.21 ± 0.05 to

0.64 ± 0.03 in Duncan et al. [90], depending on the threshold used. It has recently

been shown that adaptive thresholding can improve reliability beyond what is possible

using a fixed threshold approach [80].

While the dependence of RR on threshold has been known since shortly after

its original demonstration [89], the majority of reliability studies focus on a single

reliability threshold. Moreover, the thresholding level used varies from study to study.

This has led to dramatic variation in the range of overlap reported by individual

studies (average RR from 0.230 to 0.856) [92].
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ROC Analysis

The ROC curve is a plot of true positive and false positive rates (TPR, FPR; some-

times called ‘hits’ and ‘false alarms’) as a function of the classification threshold. ROC

reliability can be summarized by the area under the curve (AUC). The AUC may vary

from 0.0 (no true positives at any false positive rate) to 1.0 (no false negatives at any

false positive rate). However, in practice it is rare for the AUC to be less than 0.5,

as this is 50% classification accuracy, and could be obtained by randomly assigning

active and inactive voxels. The AUC is useful for comparisons between experimental

conditions, or with other reliability measures like RR [104].

The most popular ROC analysis for fMRI data were developed by Genovese et

al. [88], and further investigated by others [104, 107, 115, 117]. The Genovese ROC

method uses a model-based approach to estimate the true and false positive rates. In

their model, they asserted that for a series of ‘M’ test-retest replications, the number

of times a voxel is found above a particular threshold, ‘n’, is drawn from a mixture

of true and false positive detection probabilities (PA, PI) in proportion to underlying

fraction of active voxels (λ):

n = λBinomial(M,PA) + (1− λ)Binomial(M,PI) (3.1)

By calculating ‘n’ for all voxels, they are able to estimate PA, PI , and λ. They then

repeat this method for many threshold values to estimate an ROC curve (i.e. use PA,

PI to approximate TPR and FPR). A drawback of this process is that it depends on

the availability of a large number of task replications to produce accurate estimates

of PA, PI , and λ [108].

An alternative, test-retest method of ROC estimation was proposed by Le and

Hu [85]. Le and Hu used a long fMRI experiment with a conservative (p < 0.0005)

statistical threshold to estimate a true positive map. An ROC curve was then gener-

ated by varying the threshold on the second fMRI dataset, and calculating the TPR

and FPR at each threshold. In this method, the TPR and FPR are calculated from

overlapping/non-overlapping regions of the two images, and therefore operates using

a similar framework to other empirical overlap coefficients. These are more accu-

rately described as ‘test-retest positive’ and ‘test-retest negative’ rates, however we
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will maintain the standard nomenclature of TPR and FPR. The impact of varying

the threshold used to estimate the true positive map was not reported.

3.3.3 Research Objectives

We aim to compare the effects of threshold on both the established overlap coefficient

(RR) and novel ROC-reliability (ROC-r) analyses. For this purpose, we will inves-

tigate eight healthy individuals across two sessions (test-retest), using a standard

finger tapping task. We will show that threshold dependence and individual vari-

ability leads to two outcomes: 1) reliability studies using different thresholds should

not be directly compared, and 2) reliability should be measured and controlled for at

the individual level to better ensure replicable results. Finally we will demonstrate

new techniques for optimizing fMRI threshold selection using ROC-r analysis. These

techniques produce automated, data-driven thresholds, resulting in robust activation

maps at the individual level.

3.4 Methods

3.4.1 Participants

Eight healthy volunteers were recruited for this study (4 males, 4 females, 24.4 ± 3.5

years of age). All participants were right hand dominant according to the Edinburgh

Handedness Inventory [118]. The subjects all spoke English as their first language,

and had either normal or corrected-to-normal vision. The subjects had no known

prior neurological conditions. Subjects were each scanned at 4 Tesla, using a simple

motor task. Test-retest imaging was performed in separate scanning sessions 1-7 days

apart. The study was approved by the local research ethics board (Capital District

Health Authority REB, Halifax, NS), and all subjects provided informed consent.

3.4.2 MRI Acquisition Details

All eight volunteers were scanned twice with a 4 Tesla scanner (Varian INOVA, Palo

Alto, California), for a total of 16 scanning sessions. During each session, both

structural and functional images were acquired. The structural images were collected

with an MP-FLASH sequence with the following parameters: TI = 500 ms, TR = 10
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ms, TE = 5 ms, α = 11◦, 256 x 256 matrix, 64 slices, and 0.94 x 0.94 x 3 mm voxels

(FOV = 24 x 24 x 19 cm). Functional images were collected with a single-shot spiral

out sequence, using TR = 2 s, TE = 15 ms, α = 90◦, 64 x 64 matrix, 22 slices, and

3.75 x 3.75 x 5 mm voxels, with a 0.5 mm gap (FOV = 24 x 24 x 12 cm).

3.4.3 Functional Task

Each participant performed a finger tapping task that utilized a block design, consist-

ing of 20-second alternating blocks of stimulation and rest. Left and right hand as-

cending/descending thumb-to-digit tapping blocks were interspersed with rest blocks

(4 blocks/condition). Pace was fixed at 2 Hz using four circles (for four fingers) to con-

trol for finger tapping order and timing. Active block order was pseudo-randomized,

with a rest block before and after each active block, for a total time of 5 minutes

and 40 seconds (170 volumes). Stimuli were presented using E-Prime (Psychology

Software Tools Inc.) via a projector in the MR console room. Subjects viewed the

stimuli on a screen through a mirror mounted on the head coil. Task practice was

done before each session to ensure optimal task performance.

3.4.4 Functional MRI Analysis

Functional MRI analysis was performed using the AFNI software package [119]. Data

were first motion corrected by rigid body transformation to align all images with the

first image of that time series. Segmentation was performed to remove the skull

from both the functional and anatomical images. The high-resolution anatomical

images were down-sampled to the functional image resolution prior to calculating a

registration transformation (12 parameter affine). Functional MRI data were spatially

smoothed (Gaussian kernel of 6 mm FWHM) prior to statistical analysis.

For statistical analysis, a standard boxcar function was convolved with the default

AFNI hemodynamic response. Constant, linear, and quadratic terms were included

in the baseline model to account for low frequency drifts. For each unique linear

combination of the task regressors, the 3dDeconvolve program [119] was used to

estimate the goodness-of-fit of the task activation model, and a t-statistic map was

created. Group level activation maps for each contrast were created using a t-test

after registration to the MNI-152 brain, and thresholded at FDR corrected q = 0.01



37

(approximately p = 2×10−5 uncorrected).

3.4.5 Reliability Calculations

In this work, both overlap coefficients and ROC-reliability (ROC-r) curves were cal-

culated from pairs of test-retest images. Reproducibility analysis routines were pro-

grammed in Python and performed in individual space. Analysis was restricted to

positive task correlations only, as we observed that the negative task correlations were

substantially less reliable (by either overlap or ROC-r evaluation - data not shown).

The number of unique voxels classified active in only the first image (A1) and only the

second image (A2) were calculated (for independently varying thresholds t1 and t2).

I1 and I2 were then calculated as the number of unique inactive voxels in each image,

at the same pair of thresholds. I1,2 denoted the number of shared voxels declared

inactive (i.e. inactive in both images), and A1,2 the voxels classified active on both

images (Figure 3.1).

Overlap Coefficients

In terms of the active/inactive voxel counts defined above, the Rombouts overlap was

calculated as RR = 2A1,2/[A1+2A1,2+A2]) [92]. For each image pair, for each subject,

RR was calculated as a function of the threshold applied to both the test image (t1)

and retest image (t2). Group results were obtained by averaging RR produced at the

individual level.

ROC-reliability

Our ROC-reliability estimation procedure (ROC-r) was based on the method outlined

by Le and Hu [85]. We defined true positives as the voxels that were declared active in

both images (i.e. TP = A1,2). Those which were below threshold in both images were

counted as true negatives (TN = I1,2). False positives were counted from the voxels

active in the retest image that were not active in the template (FP = A2), and vice-

versa for false negatives (i.e. FN = A1). The true and false positive rates were then

calculated in the usual fashion (TPR = A1,2/[A1,2+A1], FPR = A2/[A2+I1,2]). The

TPR and FPR were calculated for all values of t2 at a fixed value of t1 to produce
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Figure 3.1: Schematic of test-retest overlap regions. Both the Rombouts coefficient
and the true/false positive rates used for the ROC-r analysis are calculated from the
overlapping/non-overlapping regions of fMRI images. Here A1 and A2 are the unique
volumes classified active in only the first and only the second image respectively, A1,2

is the shared activated volume, and I1,2 is the common inactive volume (adapted from
Rombouts [103]).
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an ROC curve. These true and false positive rate estimates are based purely on

test-retest measures, as the ‘true’ activity state of fMRI voxels cannot be obtained.

Whereas Le and Hu used a restrictive threshold level for t1, for the ROC-r methods

we repeated the ROC calculation for all values of t1. The effect of restricting or

expanding the template activation was then assessed quantitatively by plotting the

AUC against t1. As we used identical procedures to obtain our test and retest images,

the designation of one image as the template is arbitrary. For this reason both images

were assessed as the template, resulting in two AUC plots for each test-retest pair.

This procedure, and the subsequent analyses in section 3.5.2 we refer to as ROC-r,

and is demonstrated in Figure 3.2.

3.4.6 Threshold Optimization

We developed an automated and empirical threshold optimization procedure using

the ROC-r framework described in Figure 3.2. As exemplified in Figure 3.2, the AUC

tends to increase monotonically as a function of template threshold. As the majority

of inactive voxels are removed from the template image with increasing threshold,

the rate of AUC increase declines. In order to balance the aims of achieving a high

test-retest AUC (i.e. high reliability) and maintaining sensitivity to activation, we

designed optimization procedures that consider both the AUC value and its rate of

increase.

The AUC plots produced by the ROC-r analysis were fit with a smoothed cubic

spline to obtain a smooth estimate of the first derivative. Optimal thresholds were

taken as the first threshold for which the following two conditions were satisfied: 1)

the AUC has increased to at least half of its maximum value (i.e. AUC > = [AUCi +

AUCf ]/2) and 2) the AUC derivative has dropped below its average value (i.e. AUC’

< = [AUCf - AUCi]/[tf - ti]). Where AUCi and AUCf are the initial and final AUC

values taken from the group mean. For comparison, we will also determine reliability

optimized thresholds from the Rombouts overlap analysis by identifying local maxima

in RR as optimal threshold combinations.
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Figure 3.2: Schematic of the ROC-r method. At a given pair of image thresholds (t1,
t2), the TPR and FPR are calculated from the overlapping/non-overlapping regions.
Repeating this for all t2 values at a fixed t1 produces an ROC curve, from which the
AUC is calculated. This is repeated for all t1 values to produce a plot of AUC vs.
t1. The roles of the two images are then reversed to create both an AUC vs. t1 and
AUC vs. t2 plot.
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3.5 Results

3.5.1 Group Analysis

The right hand tapping condition of the motor task produced left-lateralized activa-

tion of the pre- and post-central gyri, supplementary motor areas, posterior cingulate

gyri, striatum, and thalamus. Activity was also observed bilaterally in the visual

cortex (occipital pole and lateral occipital cortex), and in the left cerebellum (Figure

3.3a). The left hand condition of the finger tapping task produced a similar distri-

bution of activation, with more bilateral activation than that identified in the right

hand condition (Figure 3.3b). Subject 6 was excluded from the group map due to

motion issues.

Figure 3.3: Group fMRI results (n=7). Group mean thresholded at t >= 5 (FDR
corrected q <= 0.01): a) right hand contrasted to rest, b) left hand contrasted to rest
(shown in radiological convention). The slices shown highlight the most extensive
activated regions, and correspond to the axial slices indicated on the right. See the
text for a full description of the corresponding anatomical locations.

3.5.2 Group Average Threshold-Reliability Dependence

Overlap Coefficient

Mean reproducibility was measured by averaging RR across individuals (figure 3.4a).

This grand average shows a trend of decreasing reproducibility as the threshold is

increased, dropping rapidly from RR=1.0 to RR=0.67 ± 0.03 as the threshold is
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increased from t = 0 to t = 2.6 (approximately uncorrected p = 0.01). The average

overlap coefficient then continues to decrease at a slower rate for higher analysis

thresholds. This creates the appearance of an extended ‘tail’ region to the overlap

plot, which in the group average occurs at equal analysis thresholds t1 and t2. This

tail region is highly variable across the group (figure 3.4b). From t = 2.6 to t = 6.6

(i.e. approximately uncorrected p = 0.01 to p = 1×10−6), the overlap decreases from

0.67 ± 0.03 to 0.56 ± 0.03

Figure 3.4: Group mean overlap coefficient (a), and standard deviation (b) as a
function of independent image thresholds. The group averaged result obfuscates
many phenomenon that may be observed at the individual level, as evidenced by the
high subject-to-subject variability at high thresholds.

ROC-r

In the ROC-r analysis, the average of the single-subject AUC curves was found to

increase monotonically with threshold on the template image (figure 3.5). This in-

crease is initially rapid, as more and more inactive voxels are thresholded out of the

test-image. From t1 = 0 to t1 = 5, the average AUC increases from 0.69 ± 0.01 to

0.87 ± 0.01, and then more slowly thereafter. Note that an AUC of 0.5 is the same

as random classification, so by this measure the classification reliability is reasonably

above chance even at low thresholds. As the test-image becomes more representative
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of the true active voxel distribution, the retest AUC increases more slowly, approach-

ing 1.0 asymptotically. The average AUC varied from 0.78 ± 0.01 to 0.91 ± 0.02 as

the analysis threshold was varied over the typical analysis range (p = 0.05 to p =

1×10−6 uncorrected).

Figure 3.5: Individual ROC-reliability results (average ± standard deviation of test-
retest AUC): The AUC generally increases with test-image threshold, rapidly at first
and then to diminishing returns. Subjects 2 and 6 are identified as having significantly
below average AUC, whereas subjects 5 and 7 have above average reliability by the
ROC-r analysis.

3.5.3 Individual Variability

Overlap Coefficient

At the individual level, the overlap-threshold relationship was more featured, and

highly variable (Figure 3.6). Many subjects demonstrated local maxima, and these

were frequently off-diagonal (i.e. not on the line t1 = t2). In some cases multiple

local maxima were observed. The variability in the location of these local maxima
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contributed to their averaging out at the group level, producing the plateau region

observed in Figure 3.4. Therefore the group result likely does not represent a consis-

tent trend, but rather a lack of consistent behaviour at the individual level. Subject

6 had the lowest overlap coefficients in the tail region, in agreement with the ROC-r

analysis discussed below. Subjects 5 and 7 were identified as above average by the

AUC plots, and also appear to have above average overlap coefficients in the tail re-

gion. These two subjects demonstrated overlap maxima at extremely high threshold

levels, suggesting the presence of a few strongly activated, and highly reliable voxels.

ROC-r

Although qualitatively the ROC-r AUC plots looked very similar, significant quanti-

tative differences were found between individual subjects, and between single subjects

and the group mean (Figure 3.5). In particular, the AUC for subject 7 is significantly

greater than the mean over all test-image thresholds tested. The AUC for subjects 4

and 5 begin below average but at t≈4.0 intersect the average, and thereafter is above

the group mean. Subject 2 exhibits the opposite trend, beginning above average and

crossing to below average for higher thresholds. Subject 6 is the clear outlier, exhibit-

ing below average AUC over all test-image thresholds. This subject also exhibited an

early plateau in the AUC plot, and downward spikes around t = 17. This subject re-

quired substantial motion correction (∼1 mm displacement), suggesting that motion

artifact may be contributing to the reduced reliability.

Threshold Optimization

The ROC-r threshold optimization successfully identified reliable activation in all but

the least reliable subject (i.e. subject 6). For the seven subjects in which ROC-

r based optimization succeeded, the resulting thresholds were t̄ROCr = 6.1 ± 1.3,

resulting in n = 1600 ± 1200 active voxels (means ± st.dev.). These optimized

thresholds are slightly higher than the Bonferroni corrected threshold of tbonf = 5.2

(i.e. corrected p = 0.01), and significantly higher than the FDR corrected threshold

of tFDR = 3.6 (i.e. q = 0.01). The number of voxels declared active were therefore

less than either the FDR (n = 3900 ± 2000) or Bonferroni (n = 2200 ± 1200) fixed-

threshold approaches. The average thresholds were slightly higher for images from



45

Figure 3.6: Individual rombouts overlap results: The overlap generally decreases
with increasing threshold. Subject 6 is identified as having lower reliability than
other subjects by inspection of the RR plots, and subjects 5 and 7 demonstrated the
highest overlap coefficients. Several subjects demonstrate local maxima on the RR

plots, although the location of these maxima are highly variable.
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the first session (t̄ROCr,1 = 6.3) than the second session (t̄ROCr,2 = 5.9), however this

difference was not significant. No difference was observed for the left and right hand

conditions.

Optimal thresholds were additionally determined by finding local maxima in the

overlap plots. As not all subjects exhibited local maxima, this was possible in only

11 of 16 cases, as opposed to the 14 of 16 datasets that could be optimized using the

ROC-r approach. Additionally, in 6 of 16 datasets, there were multiple local maxima,

with 20 local maxima found in total. It was observed that these local maxima were

typically at much higher thresholds than the ROC-r optimized thresholds (t̄RR
= 13.5

± 5.0), with only a few occurring at thresholds below t = 10. The RR maxima below

t=10 were typically similar to the Bonferroni corrected threshold (n = 4; t̄ = 5.1 ±
0.5).

Demonstrative examples of a) highly reliable data, b) average, and c) poorly

reproduced datasets are shown in figures 3.7, 3.8, 3.9, and 3.10. Subject 5 (right

hand condition shown in figure 3.7) produced above average reliability by both the

Rombouts and ROC-r methods. In this case, there are multiple local maxima in the

Rombouts plot, and a clear point of diminishing returns in the AUC. The ROC-r

optimized thresholds are just slightly above the Bonferroni level, and near a local

maxima in the Rombouts overlap. The additional maxima in the Rombouts overlap

occur at much higher thresholds, and produce highly specific maps of the primary

motor region (i.e. hand knob). Representative examples of the activation maps

produced at these optimized thresholds are shown as well.

Figure 3.8 shows the results from subject 3 for the left hand condition. This

dataset is very near to the average by both reliability measures. No clear local maxima

in the Rombouts overlap were observed, however the ROC-r method was still able to

predict optimal thresholds of t1 = 5.6 and t2 = 5.9. The resulting activation maps

produce very high overlap, and identify all key regions identified in the group level.

This subject demonstrates that even when no local maxima in the overlap are present,

the ROC-r automated thresholds typically lay within the ‘tail’ region of the overlap

plot, and thus identify reliable activation patterns.

Figures 3.9 and 3.10 illustrates two of the least reliable datasets obtained in this

experiment (subject 4, right hand and subject 2, right hand). It is readily seen from
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Figure 3.7: Threshold optimization for a highly reliable dataset (subject 5, right hand
vs. rest): a) ROC-r AUC, b) Rombouts overlap, and c) thresholded activation maps
(red = image 1; blue = image 2; purple = overlap). Squares: ROC-r optimized
thresholds; circles, triangles, stars, and diamonds: thresholds for local RR maxima.
FDR corrected (q <= 0.01, solid lines) and Bonferroni corrected (p <= 0.01, dashed
lines) thresholds are also shown.
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Figure 3.8: Threshold optimization for a moderately reliable dataset (subject 3, left
hand vs. rest): a) ROC-r AUC, b) Rombouts overlap, and c) ROC-r thresholded
activation maps (red = image 1; blue = image 2; purple = overlap). Squares: ROC-r
optimized thresholds. FDR corrected (q <= 0.01, solid lines) and Bonferroni cor-
rected (p <= 0.01, dashed lines) thresholds are also shown.

the Rombouts plot that the optimal thresholds will be different for the two images

in both cases. As a result, the use of a fixed-threshold approach results in very poor

test-retest reliability. This can also be seen on the ROC-r plots, as the threshold

required to achieve the same AUC is different for the two images. However, there are

local maxima present in the Rombouts overlap at high thresholds (t1 = 18.4, t2 =

13.4 for subject 4 and t1 = 14.8, t2 = 19.3 for subject 2). Both of these threshold

pairs restrict activation to the hand knob of the primary motor region. The ROC-r

optimized thresholds produce much lower thresholds in both cases (t1 = 7.8, t2 = 4.5

for subject 4, t1 = 3.3, t2 = 5.6 for subject 2), and include most of the group-level

activated regions. Either reliability-based threshold method reduces the test-retest

activation extent differences observed with fixed thresholds.

The reliability optimized thresholds were applied to each individual’s activation
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Figure 3.9: Threshold optimization for a low reliability dataset (subject 4, right hand
vs. rest): a) ROC-r AUC, b) Rombouts overlap, and c) thresholded activation maps
(red = image 1; blue = image 2; purple = overlap). Squares: ROC-r optimized
thresholds; circles: thresholds for local RR maxima. FDR corrected (q <= 0.01, solid
lines) and Bonferroni corrected (p <= 0.01, dashed lines) thresholds are also shown.
The maximal test-retest overlap occurred for unequal thresholds t1 and t2, so the use
of fixed thresholds results in more unreliable activation.
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Figure 3.10: Threshold optimization for a low reliability dataset (subject 2, right
hand vs. rest): a) ROC-r AUC, b) Rombouts overlap, and c) thresholded activation
maps (red = image 1; blue = image 2; purple = overlap). Squares: ROC-r optimized
thresholds; circles: thresholds for local RR maxima. FDR corrected (q <= 0.01, solid
lines) and Bonferroni corrected (p <= 0.01, dashed lines) thresholds are also shown.
The maximal test-retest overlap occurred for unequal thresholds t1 and t2, so the use
of fixed thresholds results in more unreliable activation.
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maps, and the results across the group were compared to the traditional group anal-

ysis in figure 3.3. The resulting group activation patterns are shown in figure 3.11,

displayed as a percent of individuals for whom a given voxel was active. It is clear that

in the majority of cases, the ROC-r analysis reproduces activation at the individual

level in the key regions identified at the group level. However, activation of the sub-

cortical regions observed at the group level, is not reliably present at the individual

level. This is due to a combination of some subjects lacking activation in this region,

and inconsistent location of these activations when present. The overlap-maximized

thresholds typically produced activation in the primary motor region only, with some

subjects displaying activation in the cerebellum as well.

Figure 3.11: Reliability-optimized group fMRI results. Individual images thresholded
using the automated ROC-r procedure (a-b) or Rombouts overlap maxima (c-d).
Both the right hand (a,c) and left hand (b,d) contrasts to rest are displayed. The
color scale corresponds to the percentage of subjects activating each voxel. When
multiple local maxima were present, the lowest non-zero threshold was selected for
the group map for maximal sensitivity.



52

3.5.4 Analysis of Poor Datasets

Subject 6 produced unreliable activation maps when compared with the other subjects

(see Figures 3.5 and 3.6). We observed that this subject exhibited a large amount

of motion, especially during the retest scan, resulting in significant image artifacts.

Although standard motion correction (re-alignment) was performed for every subject,

this was not sufficient for such large motion events. As the motion time-course for

subject 6 was not strongly task-correlated, we attempted to correct for this artifact

by using the motion correction parameters as regressors of no interest in the fMRI

response model.

The resulting activation maps for subject 6 were much more reliable after inclu-

sion of the motion parameters in the null model. This is evidenced by the Rombouts

plot exhibiting an extended ‘tail’ (Figure 3.12c) that was not present using the stan-

dard analysis pipeline (Figure 3.12b). Furthermore, the AUC recovered to within or

above normal ranges (Figure 3.12a). There was still some discrepancy in the acti-

vation magnitude between the first and second scans, which rendered the standard

fixed-threshold approaches inappropriate (figure 3.12d). However, using the ROC-r

approach we were now able to determine optimal thresholds for this subject, which

recovered similar activation patterns to those seen at the group level.

This pre-processing step was not beneficial in all subjects, as low-amplitude mo-

tion did not produce noticeable artifact, and when task-correlated, inclusion of these

regressors in the null model reduced sensitivity to true activation. Thus at the group

level, inclusion of motion regressors cause a modest, but significant (p < 0.01), re-

duction of both the maximum and mean (above threshold, FDR corrected p < 0.01)

t-statistic values (12% and 5% respectively). Using an FDR or Bonferroni approach

to threshold these datasets resulted in a significant reduction of active voxels after

motion regression by 32% or 36% respectively. However, the reduction in active vox-

els decreased to 9% when ROC-reliability based thresholding was used, and was no

longer statistically significant (p > 0.05). This demonstrates the utility of reliability-

based thresholds for mitigating the sensitivity loss that could otherwise occur when

using motion regression.
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Figure 3.12: Effects of motion parameter regression (MPR) for enhanced reliabil-
ity of a problematic dataset (subject 6, right hand vs. rest): a) ROC-r AUC
with/without MPR, b) RR without MPR, c) RR with MPR, d) thresholded acti-
vation maps. Squares: ROC-r optimized thresholds; stars: FDR corrected thresholds
without MPR; circles: FDR thresholds with MPR. FDR corrected (q <= 0.01, solid
lines) and Bonferroni corrected (p <= 0.01, dashed lines) thresholds are also shown.
The group map for approximately the same locations is shown for reference.
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3.6 Discussion

3.6.1 Group-level Reliability

We have shown that classification reliability varies dramatically with threshold using

both overlap and ROC-r approaches. This calls into question the usefulness of us-

ing single, fixed thresholds when reporting reliability, an issue that deserves special

attention given the lack of a consensus on appropriate threshold strategies. In order

to provide a more complete picture of fMRI reliability, reliability should be reported

as a continuous function of image thresholds, and these reliability plots should form

the basis of comparison between studies. The ROC-r framework is particularly well

suited to this task, as quantitative differences between groups (e.g. between patient

groups or across multiple pre-processing pipelines) can be assessed using plots of the

group mean and standard error. This will ensure that differences in reliability between

groups are not simply the result of fortuitous choice of threshold.

3.6.2 Single-subject Reliability

The threshold-reliability relationship we observed was highly individual, and the

group-level reliability was a poor predictor of reliability at the individual level. These

simple statements have profound implications for adaptation of fMRI as a diagnos-

tic technique. The use of a significance threshold is intended to separate spuriously

correlated voxels from those that are truly modulated by the task. However, it has

been shown that family-wise error control (i.e. Bonferroni and FDR corrections) does

not produce optimal reliability at the group level [120], and it is clear from this work

that it will not ensure reliable results at the individual level either. Moreover, even

well validated, robust fMRI paradigms are suspect to poorly performing subjects. Is-

sues such as task-related artifact, physiological noise, compliance, and habituation all

likely contribute to this problem. It is therefore paramount that test-retest reliability

is checked at the individual level for clinical applications.

The finding that the use of a fixed threshold is not optimal for obtaining relia-

bility estimates parallels advances with fMRI lateralization measures. Lateralization

indices are known to depend strongly on the significance threshold used, and so several
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strategies for incorporating this information have arisen [121,122]. Notably, the gener-

ation of laterality vs. threshold curves has become established practice [121,123–125].

These curves have been used to show large variations in lateralization between sub-

jects and tasks [124,126], and have even been used to determine the best threshold to

use for calculating laterality indices [121]. We similarly recommend reporting reliabil-

ity as a function of analysis threshold, in order to avoid drawing conclusions that are

threshold-specific. This is especially important when assessing individual subjects, as

reliable activation may be overlooked by poor choice of threshold.

In such applications, reliability should be assessed through test-retest imaging,

and as a continuous function of image thresholds. Both the Rombouts overlap and

ROC-r approaches have relative merits in this context: overlap coefficients are highly

intuitive and therefore easily interpreted, whereas the ROC-r approach provides an

easier framework for comparing subjects quantitatively, by reducing the results to

a 1D plot. Thus for clinical applications, qualitative inspection of the Rombouts

overlap plots, followed by a quantitative comparison of individual ROC-r plots to

a normative group mean is ideal. The latter is similar to the approach taken by

Abbott et al. [124] to separate typical from atypical lateralization curves. Practically

speaking, this requires a pilot group be employed to establish normative reliability-

threshold plots (i.e. means and standard deviations) for a given task/scanner. Ideally

this is already being done prior to any clinical fMRI studies.

3.6.3 Threshold Optimization

One of the primary aims of our study was to investigate means of using reliability to

determine optimal thresholds for individual fMRI studies. Several authors have in-

dependently concluded that reproducibility of fMRI results could provide meaningful

insights for active voxel identification [91,117,127]. From the outset, the potential of

these methods for optimizing threshold selection has been identified [88]. Meanwhile

other studies have used a mixture-model approach to determine adaptive thresholds,

and then used overlap reliability plots as a standard to assess their results [80]. The

data-driven methods used in this work may have advantages in this context to model-

based approaches, especially when the input images do not conform to the assump-

tions of these models (e.g. presence of artifacts, scanning order effects, physiological
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noise).

The most obvious caveat to reliability-based threshold optimization method is

that it requires at least somewhat reliable input data in order to produce meaningful

threshold estimates. It is clear that this will not always be the case, as a variety of

factors will impact the fMRI reliability (e.g. compliance, scanner stability, movement,

etc.). However outlying datasets are easily identified (Figures 3.5 and 3.6), and opti-

mal pre-processing settings can be determined on a subject-by-subject basis (Figure

3.12). One potential limitation of these methods is the possibility of persistent arti-

facts across test-retest sessions being interpreted as reliable activation. Edge-artifacts

associated with task-correlated head motion may be particularly problematic in this

regard, warranting caution when analyzing tasks that induce significant head mo-

tion. For this reason, we explored motion regression for the elimination of motion

artifacts. In general, motion regression decreased fMRI sensitivity in the presence of

task-correlated motion. However, the loss in sensitivity was greatly diminished using

reliability-based thresholds, suggesting that the same areas were reliably detected,

albeit at lower thresholds.

While pre-processing strategies, such as motion regression, may help with specific

artifacts, in order to obtain the best results, general strategies that maximize test-

retest reliability should be adopted in the experimental design. For example, for

well-learned tasks such as simple motor movements, it has been shown that reliability

within sessions is higher than between sessions [128]. For higher cognitive functions,

more complicated task repetition effects may need to be taken into account [129,130].

In the clinical setting, it is typically more reasonable to perform single-session test-

retest experiments than to ask patients to return for multiple scanning sessions, which

should result in slightly higher reliability estimates.

As other research groups have illustrated, ROC estimation is improved by collect-

ing more test-retest replications [88, 108, 113]. However, the extra imaging required

will need to be traded off against running fewer tasks per subject or fewer subjects

for the same amount of scanner time. In the ROC-r framework, the collection of more

test-retest datasets may be used to form more accurate template maps, for instance

by averaging together individual runs [84]. When session time must be kept to an

absolute minimum (i.e. no test-retest is available), a compromise to individual level
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optimization may be necessary. For example, a pilot group activation map may be

used to optimize subsequent individual-level maps using the ROC-r framework.

We explored two reliability-based thresholding strategies. In the first, thresholds

were chosen from the Rombouts plots using local maxima of the test-retest overlap,

which are easily interpreted as providing maximal overlap of the test-retest images. In

the second, AUC plots were optimized by balancing test-retest accuracy (i.e. AUC),

against the diminishing returns observed at high thresholds. This approach produced

a better balance between sensitivity and specificity than the overlap-maximization

approach, which tended to result in very limited activation extent. The overlap-

maximization approach may thus be suitable when very high specificity is desired

(e.g. to isolate the primary motor cortex), however this method was possible in fewer

subjects than ROC-r based optimization.

On average, the ROC-r determined thresholds were more conservative than tra-

ditional fixed-threshold approaches of the FDR or Bonferroni corrections. This is in

contrast with the findings of Thirion et al. at the group level that reliability opti-

mized thresholds were somewhat lower than either of the fixed error rate correction

schemes [120]. However, our method allows for tuning of the optimization parameters

(i.e. AUC and AUC’ cutoffs) to alter the sensitivity/specificity tradeoffs. The best

optimization strategy will thus depend on the target application, and the particular

risks associated with false positive or negative results. Ultimately, the advantage

of these methods is the extra confidence obtained through reliability optimization,

which will be particularly advantageous in clinical settings.

3.7 Conclusion

There is mounting evidence for moving beyond strict interpretation of p-values for

significance of fMRI results [80,88,91,131,132]. These studies suggest that reliability

of activation may be more informative than activation magnitude alone. With this

in mind, we developed data-driven methods for evaluating the reliability-threshold

relationship. Critically, we demonstrated automated procedures for producing robust

activation maps by optimization of individual thresholds. These thresholds were

shown to reliably identify critical task-related regions at the single subject level. We

also showed that whereas fixed threshold approaches resulted in loss of sensitivity with
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motion regression enabled, reliability-based thresholding mitigated the differences in

activation extent with or without motion regression. The ability to produce activation

maps using an entirely automated analysis pipeline is an important advance for fMRI.

We expect these methods to be especially useful wherever individual level analyses

are conducted, such as in clinical, diagnostic, and assessment applications.
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4.1 Motivation

One of the strengths of ROC-r analysis for functional mapping is the use of minimal

assumptions about the underlying data distributions. Because of this, ROC-r is

equally well suited for quality assurance and automated processing of volumetric MEG

source images. In this manuscript, we therefore use a very well known stimulation

paradigm for MEG (median nerve stimulation), and show that the quality assurance

and localization provided by ROC-r analysis of volumetric MEG maps parallels that

offered for more traditional equivalent current dipole (point source) mapping methods.

The introduction of a quality assurance metric for volumetric MEG images provides

a critical tool that was previously unavailable.

Median nerve stimulation (MNS) is a well known MEG mapping paradigm, which

uses peripheral electrical stimulation to evoke a controlled sensory response. The

sensory evoked field (SEF) response to MNS has been shown to peak at at least

three distinct latencies: the N20m, P35m, and P60m [133]. Most clinical studies have

focussed on the N20 [23,29,134], however the P35 and P60 are typically stronger, and

therefore easier to detect [133, 135]. A recent study of tumor and epilepsy patients

using MNS found that the strongest SEF occurred at an average latency of 56 ms [136].

This study also reported a large degree of between-subject variability in the latency

59
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of peak SEF response (22-162 ms). In this study, we will use ROC-r to automatically

identify the location of the P35m source.

The only requirement to perform a ROC-r analysis is the availability of at least

two estimates of the activation map. However, this manuscript uses ROC-r without

performing explicit test-retest imaging. Instead, we take advantage of the typical

MEG experimental design, which consists of many independent units (epochs), which

can be straight-forwardly divided into independent split-halves. We use these split-

halves to form pseudo test-retest datasets. A similar approach can be taken for

fMRI mapping, although more care must be taken in the generation of split-half

maps, as fMRI does not have the discrete sub-units of MEG because of the long

HRF. Nonetheless, single-run ROC-r has the obvious benefit of not requiring repeated

imaging during the scanning session. This is especially important in clinical settings,

as patients may fatigue quickly, and in pediatric populations, as children are not

typically able to sit still for long periods of time. Furthermore, single-run ROC-

r avoids the potential errors introduced by co-registration, and can produce large

samples of pseudo test-retest images, paradoxically allowing us to calculate more

accurate ROC-reliability estimates.

In this work, MEG mapping is performed using beamformer inverse solutions.

As beamformers are dipole scanning techniques, there are some subtleties to the

interpretation of these maps that must be considered. The most crucial caveat is

that beamformer spatial extent can not be interpreted as the spatial extent of the

underlying sources - indeed spatial resolution is proportional to SNR for MEG beam-

formers [137]. Therefore, strictly speaking, only the peaks (i.e. local maxima) of

beamformer clusters should be relied on for localization. Nonetheless, there are many

low-amplitude local maxima which are simply the result of measurement noise, and

are highly unreliable in their spatial configuration. Thus ROC-r can still be used to

determine: a) if there are reliably localized MEG sources in the beamformer map (i.e.

to assess data quality), and b) what threshold should be used to distinguish the reli-

able and unreliable peaks in the MEG source map. Respecting the caveats described

above, only the peaks of the reliable clusters should be utilized for localization.
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4.2 Abstract

This paper demonstrates an automated procedure for both quality assurance and

data-driven thresholding of volumetric MEG images using receiver operating charac-

teristic reliability (ROC-r). These methods are ideally suited for presurgical mapping,

where repeatability and spatial accuracy are crucial. To demonstrate ROC-r, so-

matosensory evoked fields (SEFs) were mapped in 18 healthy subjects using bilateral

median nerve stimulation (MNS). Equivalent current dipole (ECD) and beamformer

inverse solutions were calculated. The ROC-r reliable fraction (FR) was compared to

the ECD goodness-of-fit (GoF) for use as a quality assurance parameter. The peak

locations and latencies of clusters defined by ROC-r thresholds were compared to the

ECD for co-localization accuracy. The predominant component of the SEF response

occurred around 35 ms, contralateral to the MNS. The ROC-r reliable fraction and

ECD GoF were highly correlated (mean 0.66; 95% CI 0.32-0.85). There was no dif-

ference in the latency of the peak GoF (35.0 ± 0.6 ms) and FR (35.5 ± 0.8 ms).

The ECD fits and ROC-r peaks co-localized to within a mean (median) distance of

8.3 ± 5.9 mm (6.2 mm). ROC-r analysis of volumetric source maps provides auto-

mated quality assurance capabilities, comparable to those offered by GoF for ECD

modelling. Furthermore, ROC-r thresholding was shown to co-localize closely to the

gold standard of ECD. This analysis can be added to any whole-brain MEG source

imaging, and is especially useful for pre-surgical mapping, providing automated lo-

calization with built-in quality assurance. The development of a ROC-r analogue to

GoF for beamformer imaging is a critical improvement to volumetric source mapping

for clinical applications.

4.3 Introduction

Pre-surgical mapping with magnetoencephalography (MEG) localizes functional neu-

roanatomy based on relatively direct measurements of cortical electrical activity.

Among the most successful applications of MEG to pre-surgical mapping is local-

ization of the somatosensory cortex [18]. The most ubiquitous paradigms are median

nerve stimulation (MNS) [23,29], vibrotactile stimulation [138], and pneumatic stim-

ulation [28], all of which elicit sensory evoked fields (SEF) from the contralateral
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primary somatosensory cortex. MNS is also used intra-operatively to map the central

sulcus via phase reversal of surface electrocorticography [23].

Most localization studies use the equivalent current dipole (ECD) model [133,135,

139], which has been validated in a number of pre-surgical mapping studies [18, 23,

29, 134, 136]. The ECD model is attractive because of its simplicity and well-defined

goodness-of-fit (GoF) parameter for quality assurance (i.e. the percent of the sensor

variance explained by a single dipolar source). It is common to see GoF as a criterion

for selecting dipoles in pre-surgical mapping with ECD [134]. However, the validity of

the ECD model is suspect for distributed cortical activity or multiple cortical sources

with more complicated evoked fields. Models using multiple dipoles are available, but

require a priori specification of the number of dipoles. This makes them challenging

for clinical practice due mainly to poor inter-rater reliability.

More recently, studies have used volumetric source models to overcome limitations

of the ECD model [30,31,33,74–76,140]. Volumetric source models like beamformers

generate whole-brain source maps capable of describing multiple or distributed corti-

cal sources, alleviating the need to specify the number of dipoles. Despite increasing

use in pre-surgical mapping, there is no established method for quality assurance of

volumetric source models. Additionally, thresholding of single-subject maps is often

based on a priori expectations for the clinically relevant activation patterns, under-

mining improvements in inter-rater reliability achieved by moving away from ECD

models. A method to assess the quality of volumetric source maps and determine

appropriate threshold levels is needed.

We have thus developed methods for quality assurance and automated thresh-

olding of volumetric MEG source maps to improve the reproducibility of the source

modelling process. Our approach uses a receiver operating characteristic reliability

(ROC-r) framework previously demonstrated for fMRI mapping [141]. The advan-

tages of ROC-r are two-fold. Firstly, ROC-r provides quantitative measures of source

map reliability, increasing confidence in localization results. Secondly, ROC-r iden-

tifies optimal data-driven thresholds, facilitating push-button processing of volumet-

ric source maps. This reduces the reliance on ad hoc thresholding and decreases

inter-rater variability. The addition of ROC-r analysis to whole-brain MEG mapping

enhances pre-surgical mapping capabilities.
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In this study, we validate the ROC-r method for the case of beamformer mapping

of the MNS SEF, by means of a comparison to the well established ECD model. The

MNS paradigm makes an ideal test case as it generally provides robust localization

of the early SEF response in single subjects. We will show that ROC-r provides

quality assurance metrics for whole-brain MEG mapping analogous to the GoF of the

ECD model. Furthermore, we will show that ROC-r automated thresholds identify

brain areas well-matched to those determined using ECD. These findings establish the

utility of ROC-r for pre-surgical MEG mapping, by introducing quantitative measures

of data quality and automated methods for detecting significant areas of activity.

4.4 Methods

4.4.1 Data Collection

Eighteen healthy volunteers participated in this study (10 females; age 19-29, mean

24 years). The study was approved by the local ethics board, and subjects pro-

vided informed consent. Each participant received an MEG scan during which the

somatosensory cortices were localized using bilateral MNS. Head position indicator

coils placed on both the left and right temples and mastoids monitored head po-

sition throughout the MEG scan. The nasion, left/right pre-auriculars, and scalp

surface were digitized for source modelling. Electro-oculargraphy (EOG) electrodes

were placed above and below the left eye and lateral to each eye for the removal of

artifacts. MEG and EOG data were collected at 1000 Hz sampling frequency, with

an in-line 0.1-330 Hz filter using a whole-head 306 channel Neuromag system (Elekta

AB, Stockholm, SE).

4.4.2 MNS Paradigm

Both primary somatosensory cortices were mapped using bilateral MNS. Motor thresh-

olds were determined by applying supra-threshold stimulation, and reducing the stim-

ulation strength until thumb twitches were no longer discernible. Sub-threshold stim-

ulation was delivered in single 0.5 ms pulses 1-2 s apart. Eighty to one-hundred

stimuli were applied to each side in random order.



64

4.4.3 Data Pre-processing

MEG data were pre-processed to create the SEF responses to left and right MNS.

Following environmental noise reduction with temporal signal space separation [142],

a low-pass filter was applied (70 Hz), and data were down-sampled to 250 Hz. In-

dependent component analysis was performed to remove components correlated with

the EOG signals. The data were segmented into epochs relative to the left or right

MNS onset (-200 < t < 200 ms), and baseline corrected for the -100 to 0 ms period.

The epoched MEG data were averaged for left and right MNS separately to generate

SEF responses.

4.4.4 Source Localization

ECD Modelling

Source localization using the ECD model was achieved using the xfit software (Elekta

AB, Stockholm, SE). A spherical model was employed based on the head shape col-

lected prior to MEG acquisition. At each time-point in the SEF, the location, orien-

tation, and strength of the single dipole that provided the best GoF was determined.

The latency of the peak GoF nearest to the P35m was identified, and the location at

this latency defined the localization of primary somatosensory cortex.

Beamformer Mapping

Volumetric source mapping was performed using the beamformer spatial filter method

on the epoched MEG data. The epochs were divided into split-halves prior to com-

puting a dynamic beamformer (Elekta AB, Stockholm, SE), to facilitate subsequent

ROC-r analysis (i.e. half of the trials were randomly selected to form one beamformer

map, and the remaining half for a second beamformer). The dynamic beamformer

produced whole brain activation maps for each time-point of the SEF. For each lo-

cation in the brain, the dipole direction was chosen to maximize source power, and

the pseudo-z statistic was calculated by taking the ratio of the source power to the

projected noise covariance at that same location. Covariances were calculated from

each split-half evoked response for the -200 to 0 ms (baseline) period, and the 0 to

200 ms (active) period. The beamformer forward solution was calculated using the
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same spherical model employed for ECD localization. Independent spatial maps were

calculated for left and right MNS, and for each split-half of the data. This process was

repeated for 8 different randomized split-halves, generating sixteen SEF maps (i.e. 8

split-half pairs) for each participant and each side of stimulation. A final source map

for each participant/side was obtained by averaging the 16 split-half maps.

4.4.5 Anatomical Template

The MNI152 template MRI [143] was used as an anatomical frame of reference for

localization. The Isotrak head digitization was manually registered to the MNI head

shape using a translation and rotation transformation. Applying this transformation

to the MNI152 template produced an anatomical image in the individuals’ head coor-

dinates. This was used to interpret dipole locations, and to construct the beamformer

source grids. The template brain was down-sampled to 4 mm to provide a reasonable

source grid resolution. Beamformer source estimates were produced for each voxel in

this grid.

4.4.6 Quality Assurance Analysis

Beamformer reliability was assessed using ROC-r (see Stevens et al., 2013 for more

details [141]), and compared to the ECD GoF. The ROC-r algorithm takes as input

two source maps, and outputs the ROC area under the curve (AUC) as a function of

threshold for each map. Overall reliability of the source maps is summarized using

the reliable-fraction (FR), which is the fraction of the threshold range for which the

AUC is above its mid-range (Figure 4.1). High FR indicates that reliability increases

quickly with increasing threshold, and remains high for a large range of thresholds.

Reliability was assessed for each time point from -200 to 200 ms, using each split-

half map pair as ROC-r inputs (i.e. each split-half produces two source maps, and

these can be used to generate a ROC-r analysis). The FR was then averaged across the

8 split-half pairs, producing a time-dependent estimate of the beamformer reliability

for each subject/hand. The mean and variance of the FR was compared to the GoF

for the baseline and active periods, and the time courses of the FR and GoF were

compared via the correlation coefficient to demonstrate validity of the FR metric.

The latency of the peak FR nearest to the P35m was also identified, and compared
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to the latency of the peak GoF via a paired t-test to ensure both methods identified

the same evoked response.

Figure 4.1: Diagram of the ROC-r output. The thick solid line shows the ROC area
under the curve as a function of image threshold. The mid-range value (dash-dotted
line), and the ‘linear rate’ (dashed line) are shown. The reliable fraction is the fraction
of the threshold range for which the AUC is above the mid-range value (i.e. FR =
2.5/3.0 = 0.833). The optimal threshold is the lowest threshold for which the AUC
is above the mid-range value and the slope is equal to or less than the linear rate.

4.4.7 ROC-r Thresholding

ROC-r was also used to compute thresholds to identify clusters of significant activity

in the beamformer maps. First, beamformer maps were extracted from 24 to 44 ms

to capture the 35 ms peak. Each split-half pair was submitted to ROC-r analysis,

resulting in 8 pairs of AUC versus threshold curves. Optimal thresholds were deter-

mined as the lowest threshold for which the AUC was above mid-range, and the AUC

rate of change dropped below the ‘linear rate’ ([AUCmax-AUCmin]/[tmax-tmin], see

Figure 4.1), providing a balance between high reliability and high sensitivity. Finally,

the average ROC-r threshold across the 16 AUC curves was applied to the average
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beamformer map.

4.4.8 Localization Comparison

ROC-r beamformer localizations were validated by comparison with ECD locations.

Thus for each thresholded beamformer map, activation was divided into contiguous

clusters (i.e. adjacent voxels in space or time), and the largest cluster was identified.

The peak location and latency of the largest cluster was extracted and compared

to the ECD location at the same latency. Co-localization accuracy was measured

as the euclidean distance between the two locations. Distances and displacements

in the left/right, anterior/posterior, and superior/inferior directions were also calcu-

lated. Finally, we examined the relationship between data quality (GoF/FR) and

co-localization accuracy to investigate possible sources of co-localization error.

4.5 Results

4.5.1 Sensory Evoked Fields

SEF responses to median nerve stimulation were detected from the contralateral hemi-

sphere of all subjects. Figure 4.2 shows the group averaged SEFs. The first SEF peak

occurred at stimulus onset - an artifact of the electrical stimulation. A small 20 ms

peak (N20m) was observed in the group average, but was not detectable in all in-

dividual subjects. The 35 ms peak (P35m) was the most prominent deflection, and

was easily discernible in most subjects. Later responses (50-120 ms) of similar magni-

tude to the P35m were common, although exact latencies were subject-specific. The

group level sensor topographies shown in Figure 4.2 were consistent with contralateral

dipolar sources from 20 to 120 ms.

4.5.2 Beamformer Reliability and Quality Assurance

ROC-r successfully measured reliability of the beamformer source maps in all sub-

jects. Representative FR and GoF time-courses are shown in Figure 4.3. Both FR and

GoF were lower during the baseline period (0.10 ± 0.04 and 0.37 ± 0.14 respectively)

than from 20-120 ms post-stimulus (0.53 ± 0.25 and 0.68 ± 0.19). The change in

quality scores between the baseline and active periods was larger for FR (factor of
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5.3) than GoF (factor of 1.8), indicating that the ROC-r measure of data quality is

more sensitive than GoF. Variance of the FR was significantly less than GoF during

baseline. The ROC-r FR exhibited a peak at the time of stimulation, as the electrical

stimulation device produced a reliable field pattern on the sensors, which in turn pro-

duces a characteristic beamformer solution. This field pattern was not well described

by a single equivalent dipole, and thus the dipole GoF was low despite the FR peak.

Figure 4.3: Dipole goodness-of-fit and ROC-r reliable-fraction over time for a repre-
sentative subject. The mean and variance of the GoF during the baseline period (-200
to 0 ms) is higher than the FR. The peak values and latencies of FR are similar to
those of the GoF, with the exception of the stimulus artifact. Overall there is a high
correlation between the GoF and FR, indicating that ROC-r FR provides a successful
analogue to GoF for quality assurance of beamformer source maps.

Across the group, ROC-r and ECD modelling identified the same latency for

the P35m (tROC−r = 35.5 ± 0.8 ms, tECD = 35.0 ± 0.6 ms; p = 0.46). There

was significant correlation between the FR and GoF time-courses, indicating that the

ROC-r quality assurance metric parallels the information provided by ECD GoF. The

mean correlation coefficient between the FR and GoF was 0.66 (95% CI: 0.32-0.85).

Table 4.1 shows the correlation between FR and GoF for each dataset.
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Table 4.1: Correlation between ROC-r FR and ECD GoF by subject and side of
median nerve stimulation. The difference between the left and right MNS correlation
was not significant. The range of correlations was substantial (0.388-0.864), but in
all cases the correlation was statistically significant at p¡0.001.

Subject Left Right
1 0.641 0.700
2 0.542 0.584
3 0.766 0.533
4 0.393 0.670
5 0.745 0.655
6 0.815 0.692
7 0.582 0.531
8 0.519 0.598
9 0.676 0.686
10 0.458 0.645
11 0.388 0.558
12 0.695 0.738
13 0.787 0.677
14 0.613 0.774
15 0.414 0.474
16 0.431 0.793
17 0.864 0.811
18 0.718 0.829
Average 0.639 0.676
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4.5.3 Source Localization and Thresholding

ECD localization between 24 and 44 ms was possible in 33/36 MNS datasets. ROC-

r thresholds ranged from a pseudo-z of 0.56 to 1.34, with a mean of 0.92 ± 0.19,

identifying significant clusters for 32/36 datasets. Seven of the beamformer maps

contained multiple clusters in the selected latency window. Datasets for which either

method failed to achieve localization (i.e. no beamformer clusters were identified, or

no dipole fit was possible) were excluded from co-localization analysis, resulting in 31

ECD and ROC-r beamformer peak comparisons.

Typical ECD and beamformer localizations are shown in Figure 4.4. The mean

dipole to beamformer peak distance was 8.3 ± 5.9 mm. The distribution was skewed

by a few datasets with large (> 15 mm) separation between the dipoles and beam-

former peaks (Figure 4.5), rendering the median (6.2 mm) more representative of

typical co-localization (e.g. Figure 4.4b). Dipole locations were frequently within

the boundaries of the ROC-r beamformer clusters, but sometimes localized between

multiple beamformer clusters (e.g. Figure 4.4a).

The mean distance between the ECD and beamformer locations was greatest in

the left/right (4.6 ± 0.8 mm), followed by anterior/posterior (4.3 ± 0.6 mm), and

then the superior/inferior directions (3.2 ± 0.6 mm). Displacement in the left/right

and anterior/posterior directions did not differ significantly from zero (0.5 ± 1.1 mm

and 0.1 ± 1.0 mm respectively). However, the beamformer peaks were displaced

significantly in the superior direction compared to the ECD locations (2.1 ± 0.7 mm;

p = 0.008).

Co-localization accuracy tended to be better for datasets with higher GoF and FR,

indicating that higher quality data were more likely to produce consistent localization

results. FR explained more variance in the dipole to beamformer distance (R = -0.612)

than GoF (R = -0.591), but both were significant predictors of accuracy (Figure 4.6).

4.6 Discussion

We demonstrated ROC-r analysis for quality assurance and automated thresholding

of beamformer MEG source maps on a single-subject basis in a well-known pre-

surgical mapping paradigm. The reliable-fraction metric paralleled the goodness-of-fit
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Figure 4.4: Representative dipole/beamformer co-localizations. a) ROC-r thresholded
beamformer map (red-yellow) and ECD (crosshairs) for a subject with co-localization
(8.2 mm between ECD and ROC-r peak) similar to the group mean (8.3 ± 5.9 mm).
b) ROC-r map and ECD location for a subject with co-localization (5.89 mm) rep-
resentative of the group median (6.2 mm). In both of these subjects, the ECDs were
located within beamformer source clusters.
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Figure 4.5: Histogram of the distance between the ECD and beamformer cluster lo-
cations. The distribution is skewed by a small number of datasets with high distances
between the ECD and cluster peaks, resulting in a higher mean (8.3 ± 5.9 mm) than
median (6.2 mm) distance. No obvious difference between left and right MNS was
observed.

from ECD modelling, and automated thresholding co-localized with the gold-standard

ECD locations. Overall, ROC-r analysis enhances MEG for pre-surgical mapping

by reducing the need for expert intervention in the production and assessment of

volumetric images.

4.6.1 The MNS SEF

We observed a robust P35m peak in most subjects, with more variable peaks between

50-120 ms. Notably, we did not reliably observe the N20m peak, which is frequently

used in clinical mapping studies [29]. Our failure to produce an N20m peak was likely

due to the number of stimuli used in this study. The N20m peak is known to have less

than half the amplitude of the P35m, and most studies reporting the N20m use 200

to 500 stimuli to produce the SEF [23, 139]. With more stimuli, we would expect an

enhanced N20m. Likewise, Sutherland et al. [144] showed that the later latencies of

the SEF (i.e. > 50-60 ms) produce bilateral sources, although the ipsilateral sources

were much weaker, and were therefore not observed in this work.
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Figure 4.6: Relationship of a) ROC-r reliable-fraction and b) ECD goodness-of-fit
to the distance between the ECD and beamformer peak locations. Co-localization
accuracy increases with increasing GoF or FR, suggesting that data with high beam-
former reliability and strong dipolar field patterns co-localize closely. FR was a slightly
stronger predictor (R = -0.612) of accuracy than GoF (R = -0.591).
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We also observed SEF peaks at later latencies (60-120 ms) than those typically

described in MEG MNS studies (20-60 ms), but agreeing with Huttunen et al. [133],

who described a late negative deflection in the SEF (∼60-120 ms). Indeed, a recent

pre-surgical mapping study using MNS found the largest SEF peak occurred as late

as 162 ms in some subjects, and that this component also localized to the post-central

gyrus [136].

4.6.2 ROC-reliability for Quality Assurance

The lack of established quality assurance metrics has been an issue for clinical imple-

mentation of beamformer imaging, as unreliable source images are potentially dele-

terious. We validated the ROC-r FR as a quantitative metric suitable for quality

assurance of single-subject MEG beamformer maps. The development of an analogue

to ECD GoF for beamformer imaging is a major step forward for applying volumetric

source maps in the clinical theatre.

While correlation between FR and GoF was generally high, there were exceptions.

For example, the FR values and variability were lower then the GoF during the

baseline period. We consider this an advantage for ROC-r, as we expect no evoked

activity during the pre-stimulus period, and thus the reliability of source localization

during this time should be low. Additionally, low variability during baseline/inactive

intervals makes it easier to discern later latencies with robust evoked responses. We

also observed that low dipole GoF does not rule out the potential for a reliable

beamformer solution, which will be advantageous in the case of mapping brain activity

with complex field patterns. For MNS mapping, the later latency evoked responses

have been shown to be consistent with bilateral sources [144], and we may therefore

expect to see a divergence of the dipole GoF and ROC-r FR in this case. That we did

not observe this mismatch between the GoF and FR at later latencies (> 50 ms) is

possibly due to the relatively low number of trials rendering the ipsilateral response

indiscernible from the background noise.

It is thus likely that ROC-r quality assurance will provide the most improvement

over GoF for multiple or distributed cortical sources, such as pre-surgical mapping

of language [145, 146]. In these cases, the evoked field patterns may not be dipolar

in form, but still reflect true neural activity. While a multiple dipole model could be
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employed, this would require a priori specification of the number of dipoles, requiring

expert user intervention and introducing inter-rater variability. ROC-r could be used

in these cases to quantitatively determine the latencies of reliable sources.

4.6.3 ROC-r Thresholding to Localize MEG Sources

While some beamformer thresholding approaches have been described previously [82,

147, 148], threshold selection is still often adjusted manually on an ad hoc basis,

to isolate desired source peaks. For example Alikhanian et al. manually specified

different thresholds for each frequency band in their data to avoid bias towards higher

signal power at lower frequencies [149]. However, we have shown that data-driven

methods can provide the flexible threshold levels needed to reliably localize MEG

sources, while also eliminating inter-rater variability.

It is important to acknowledge that the spatial extent of beamformer clusters

is not an accurate representation of the spatial extent of the underlying sources.

Nonetheless, ROC-r is able to determine appropriate threshold levels for separating

the reliable and unreliable clusters, with the assumption that this correspondingly

separates neural sources from noise. Therefore, for beamformer maps only the peaks

of the reliable clusters should strictly be used for localization. However, other MEG

localization techniques that are sensitive to spatial extent like dynamic statistical

parametric mapping (dSPM [76]) or maximum entropy on the mean (MEM [150])

could potentially bypass these issues, but are outside the scope of this manuscript.

The ROC-r beamformer cluster peaks co-localized closely to the ECD locations.

The most comparable beamformer/ECD co-localization study in the literature was

reported by Cheyne et al. [140]. They found the N20m localized by an event-related

beamformer and ECD were on average 6.3 ± 2.3 mm apart for right MNS and 5.5

± 2.0 mm for left MNS. Our study produced similar co-localization accuracy with

entirely automated methods, albeit using a different beamformer implementation and

SEF component.

ROC-r produced multiple clusters for approximately 20% of datasets. This demon-

strates the potential advantage of whole-brain source reconstruction methods over

ECD fitting, as these clusters were recovered without a priori specification of their
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number or configuration. Examples of ECD dipoles located between multiple beam-

former peaks (e.g. Figure 4.4a) suggest that co-localization accuracy can be poor

due to mislocalization of the ECD dipoles in the presence of multiple sources. This

hypothesis could be tested through simulations.

4.6.4 Data Quality Influences Co-localization Accuracy

We showed that both GoF and FR were significant predictors of co-localization ac-

curacy. Of course localization by either method is suspect when the respective qual-

ity assurance metric is low. However, we unexpectedly observed 2/36 datasets with

strong ECD fits, for which there was no reliable beamformer activity. The beamformer

calculation relies primarily on accurate data and noise covariance calculations, so it is

possible that changing the covariance windows could produce a reliable beamformer

in these cases.

4.7 Conclusion

The addition of ROC-r analysis to beamformer imaging offers crucial benefits in the

clinical environment, integrating push-button mapping with built-in quality assur-

ance. We showed that ROC-r reliable-fraction is a suitable quality assurance metric

for volumetric MEG source maps, with high correlation to the GoF used routinely

for ECD modelling. Furthermore, the ability of ROC-r analysis to determine data-

driven thresholds was demonstrated with MEG data for the first time, and validated

by co-localization with the standard ECD model. While we demonstrated ROC-r

analysis for beamformer imaging of MNS, we expect these methods to generalize to

other stimulation paradigms and volumetric imaging techniques. The greatest bene-

fit of this method will likely be for paradigms that elicit concurrent cortical sources,

due to the ability to detect multiple source clusters without a priori specification of

the number of sources or threshold levels. The introduction of a quality assurance

metric for volumetric MEG source maps provides a much-needed tool for the clinical

environment.
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5.1 Motivation

The following manuscript applies the ROC-r method in a group of patients undergo-

ing surgical treatment for brain tumors. This paper focusses on the ability of ROC-r

to classify datasets as reliable or unreliable, and to determining pre-processing steps

that can be used to increase the quality of the pre-surgical maps. The ability to iden-

tify unreliable datasets is crucial in the clinical environment, as poor quality images

will provide misleading information on localization of brain function. By showing that

datasets that have high ROC-r FR scores are also better at predicting the location

of critical eloquent cortical regions, we demonstrate that the ROC-r metrics provide

clinically meaningful quality assurance of pre-surgical maps. Furthermore, by auto-

matically identifying the best pre-processing options, including activation thresholds,

reliable activation maps can be produced without user-intervention. This eliminates

the influence of inter-rater variability on the result of the functional mapping process,

and thus provides a standardized and yet flexible approach to pre-surgical mapping.

In this manuscript, the locations of cortical activation identified by fMRI will be

compared to cortical stimulation in order to provide an external reference standard

for eloquent cortex. Cortical stimulation (CS) is frequently used as the gold standard

for critical functional cortex [57], as the elicitation or disruption of brain function

78
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using CS is predictive of post-operative morbidity associated with surgical resection

of a section of cortex. While the use of CS as a gold standard is ubiquitous in the

literature, in several ways it is not ideal as a reference standard for fMRI. Firstly, CS

is a point-stimulation technique, and can only be used to map the relatively small

surgically exposed portion of the cortex. Furthermore, while the electric current used

for stimulation propagates a few millimetres into the cortex [52], deep sites are gen-

erally inaccessible by CS. Thus there are many regions which may be identified by

pre-surgical mapping as responding to a task that can not be evaluated intraopera-

tively. In addition, while it is typically assumed that cortical stimulation effects are

localized to the patch of cortex under the stimulating probe, evoked potentials in

distant cortical regions have been reported [13], and these distant effects are difficult

to predict and rarely monitored.

In this paper, the fMRI activation maps produced through ROC-r optimization

are assessed in terms of their ability to predict the location of critical eloquent cortex,

as measured by CS. Two metrics are used for this purpose: the fMRI to CS distance,

and the sensitivity/specificity of the fMRI results. The fMRI to CS distance is the

simplest outcome measure for the presurgical maps, and is calculated from the CS

point to the centre of the nearest active voxel on the fMRI map. When the fMRI to

CS distance is low, eloquent cortex is likely to be located near or within the borders

of the fMRI activations, and thus the utility of the presurgical maps for guiding the

CS process is high.

In order to calculate sensitivity and specificity, studies typically establish small

search volumes around each eloquent location to define the ‘true’ critical functional

regions. The presence or absence of fMRI activity within these true critical regions

then defines the sensitivity of the pre-surgical paradigm. Likewise, the remaining ar-

eas of exposed cortex are defined as non-eloquent cortex, and are used to measure the

specificity of the pre-surgical protocol. This analysis allows one to distinguish a tech-

nique with high sensitivity due to over-estimation of activation (i.e. low specificity)

from one with high sensitivity and a low false positive rate (i.e. high specificity).

Larger search ranges around each CS location inherently produce higher sensitivity

and lower specificity, and while there is no consensus on the best search range to

use, typical values range from 0 mm (direct matching only) to 15 mm. Higher search
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ranges may be more appropriate for an augmentative pre-surgical protocol, whereas

lower search ranges are suitable for assessing a technique as a potential replacement

for CS.

The two CS based metrics thus provide a clinically relevant context for evaluating

the success of a pre-surgical mapping protocol. Low fMRI to CS distance is required

for fMRI to be suitable in guiding cortical stimulation investigations, while sensitiv-

ity/specificity analysis allows one to distinguish between co-localization achieved by

chance (i.e. with low specificity) from a truly predictive technique. Furthermore,

the search range used to achieve a certain level of sensitivity can help to distinguish

a pre-surgical protocol suitable for replacing CS (i.e. high sensitivity even for very

small search ranges) from one that is best suited to augmentative use (larger search

ranges needed for high sensitivity).

5.2 Abstract

Purpose: Functional MRI is becoming increasingly integrated into clinical practice

for pre-surgical mapping. Current efforts are focused on validating data quality, with

reliability being a major factor. In this paper, we demonstrate the utility of a recently

developed approach that uses Receiver Operating Characteristic-reliability (ROC-r)

to: 1) identify reliable vs. unreliable datasets; 2) automatically select pre-processing

options to enhance data quality; and 3) automatically select individualized thresholds

for activation maps.

Methods: Pre-surgical fMRI was conducted in 16 patients undergoing surgical treat-

ment for brain tumors. Within-session test-retest fMRI was conducted, and ROC-

reliability of the patient group was compared to a previous healthy control cohort.

Individually optimized pre-processing pipelines were determined to improve reliabil-

ity. Spatial correspondence was assessed by comparing the fMRI results to intraop-

erative cortical stimulation mapping, in terms of the distance to the nearest active

fMRI voxel.

Results: The average ROC-reliability for the patients was 0.58 ± 0.03, as compared

to 0.72 ± 0.02 in healthy controls. For the patient group, this increased significantly

to 0.65 ± 0.02 by adopting optimized pre-processing pipelines. Co-localization of the

fMRI maps with cortical stimulation was significantly better for more reliable versus
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less reliable datasets (8.3 ± 0.9 mm versus 29 ± 3 mm, respectively).

Conclusion: We demonstrated ROC-r analysis for identifying reliable fMRI datasets,

choosing optimal pre-processing pipelines, and selecting patient-specific thresholds.

Datasets with higher reliability also showed closer spatial correspondence to cortical

stimulation. ROC-r can thus identify poor fMRI data at time of scanning, and allow

for repeat scans when necessary. ROC-r analysis provides optimized and automated

fMRI processing for improved pre-surgical mapping.

5.3 Introduction

5.3.1 Pre-surgical Mapping Validity and Reliability

Functional magnetic resonance imaging (fMRI) is increasingly being used to map

eloquent cortex prior to surgical treatment for brain tumors [57, 151]. The goal

of pre-surgical mapping is to identify functional brain regions near the tumor, to

plan surgical approach, identify risks, and potentially render intra-operative electro-

cortical stimulation (CS) unnecessary. Functional MRI is attractive for this purpose

due to non-invasiveness, repeatability, high spatial resolution, and broad availabil-

ity [16, 152].

Validated pre-surgical fMRI protocols were demonstrated first for sensory-motor

function [36], followed by language localization [37, 47], and more recently memory

mapping [153]. These validation studies compare fMRI localization with a gold stan-

dard measure such as CS. The concordance of fMRI and CS is influenced by the

matching criteria used [49], field strength [57], pre-surgical tasks employed [51], and

by the threshold used during fMRI analysis [154]. A recent review asserts that this

heterogeneity has led to widely varying estimates of the accuracy of fMRI compared

with CS [57].

Functional MRI results have a high degree of variability [92,98,155], and although

inter-subject variability is higher than intra-subject variability, a single scan fMRI

experiment includes a substantial amount of false positives and false negatives. Re-

peating scans is thus useful in order to produce more reliable activation maps for an

individual patient. For example, Beisteiner et al. [39] restricted fMRI activity to only

those voxels that survived high correlation thresholds in all repetitions of a motor
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task. This resulted in fewer active voxels, with improved reliability and closer spatial

correspondence to CS results.

Variability in fMRI can also be mitigated by using individualized data-driven pre-

processing strategies. Gonzalez-Ortiz et al. [156] showed that built-in scanner analysis

software was often sufficient for pre-surgical mapping, but 3rd party packages offered

superior flexibility, reduced noise, and were preferred by radiologists. However, they

were unable to provide quantitative guidelines for determining the best pipeline for a

given fMRI dataset. Quality assessment tools are clearly needed in order to objectively

determine the optimal pre-processing settings on a case-by-case basis.

In this context, tools such as NPAIRS (Non-parametric Prediction, Activation,

Influence and Reproducibility reSampling), [61,157,158] and empirical ROC analysis

(Receiver Operating Characteristic) [88, 132, 141] are used to determine optimized,

subject-specific pre-processing pipelines. These techniques are especially important

in patient populations, as clinical disorders generally decrease fMRI reliability [92,

110,159].

5.3.2 Thresholds for Pre-surgical Mapping

In fMRI analysis, statistical thresholds are used to estimate the extent of activation,

impacting reliability and accuracy of the resulting maps [67]. It has been argued

that fixed statistical thresholds do not account for individual variability, differences

in scanning hardware or software strategies, functional tasks or modalities, or habit-

uation to testing conditions [51,57,154,160]. Our group also showed that fixed error

rate thresholds do not provide optimal reliability for individual subjects [141], and

validation studies of concordance with CS have demonstrated that optimal thresholds

vary between individuals and functional tasks [51,154].

In practice, manual adjustment of threshold levels is often used, with implicit

risks of inter-rater differences. Data-driven thresholds address this problem by using

quantitative and reproducible methods [80, 88, 141]. These methods are sensitive

to variations in fMRI activation levels, and have demonstrated reliable fMRI results

across a variety of experimental conditions. Crucially, these approaches can be applied

at the individual patient level.
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5.3.3 The ROC-reliability (ROC-r) Framework

We recently introduced a ROC-reliability analysis framework (ROC-r) [141], which

summarizes test-retest reliability through plots of the area under the ROC curve

(AUC) versus analysis threshold (e.g. Figure 5.4c). We demonstrated that ROC-r

is useful for assessing fMRI reliability, selecting pre-processing pipelines, and deter-

mining optimal analysis thresholds [141]. The ROC-r method is uniquely capable

of automating the production of activation maps, thereby producing reliable push-

button results.

In this study, we will demonstrate the application of ROC-r fMRI analysis to a

group of patients who also received intraoperative CS mapping. The study was de-

signed to address the following three hypotheses: 1) ROC-reliability will be lower for

patients compared to healthy controls [92]; 2) reliability of single-subject maps will

be improved by optimizing analysis pipelines; and 3) comparing the ROC-r optimized

fMRI activations with CS mapping results, we expect higher spatial correspondence

in data sets with higher reliability. We expect ROC-r to be beneficial for pre-surgical

mapping by combining clinically relevant quality assurance with push-button activa-

tion map production in a single framework.

5.4 Methods

5.4.1 Participants

Sixteen patients (39 ± 13 years of age; 9 female, 7 male; 13 right-, 2 left-, 1 mixed-

handed) receiving surgical intervention for brain tumors volunteered for the fMRI

study. All volunteers underwent pre-surgical fMRI, and most received cortical stim-

ulation during surgery (n = 13). This study was done in compliance with the local

research ethics board (Capital District Health Authority REB, Halifax, NS), and sub-

jects provided informed consent prior to enrollment. Tumor types and locations were

heterogeneous. For a complete list of age, sex, handedness, tumor location, and type

refer to table 5.1. A control group (n = 8) for this study was previously described,

and performed both the finger tapping and sentence reading tasks (see below) [141].
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5.4.2 MRI Acquisition Details

All 16 volunteers were scanned using a 4 T scanner (Varian INOVA, Palo Alto, Cal-

ifornia). Structural images were collected with an MP-FLASH sequence: TI = 500

ms, TR = 10 ms, TE = 5 ms, α = 11◦, 256 x 256 matrix, 190 slices, and 0.94 x

0.94 x 1 mm voxels (FOV = 24 x 24 x 19 cm). Functional images were collected

with a two-shot spiral out sequence, using TR = 2 s, TE = 15 ms, α = 90◦, 64 x 64

matrix, 22-25 slices, and 3.75 x 3.75 x 4.0 mm voxels, with a 0.5 mm gap (FOV =

24 x 24 x 10-11 cm). Test-retest imaging was performed within-session. A variety of

tasks were included in this study, depending on the brain tumor location and planned

CS investigations for each patient (Table 5.2). The finger tapping task was used for

patients with tumors near the primary motor cortex (i.e. central sulcus region) or

secondary motor cortex (i.e. pre-central sulcus). The object naming task was used

preferentially for patients with tumors in the inferior frontal lobe (Broca’s area), or

the inferior central sulcus region, and occasionally included for temporal lobe lesions.

The sentence reading task was used for patients with tumors in either the temporal

lobe or inferior frontal lobe.

5.4.3 Functional MRI Analysis

Functional MRI analysis was performed using the AFNI software package [119], in

combination with tools written in the Python programming language. Initial pre-

processing steps were applied universally, including rigid body motion correction.

Segmentation isolated the brain from both the functional and anatomical images.

Down-sampled anatomical images were registered to the functional image using a 12

parameter affine transformation.

The remaining pre-processing options were optimized individually, including: 1)

spatial smoothing (3, 6, and 9 mm FWHM), 2) motion parameter regression (MPR:

on/off), and 3) auto-correlation correction (ACC: on/off). All combinations (n = 12)

of these options were analyzed using the ROC-r methodology described below. The

default pipeline (6 mm smoothing, no MPR, and no ACC) was used unless significant

reliability improvements were observed with an alternative combination. Statistical

analysis was carried out using 3dDeconvolve/3dREMLfit in AFNI. Low frequency

signal fluctuations were removed by 2nd order polynomial regression.
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5.4.4 ROC-reliability Analysis

ROC-r analysis measures test-retest reliability in terms of the overlap of active/inactive

regions in the activation maps as a function of image thresholds. Briefly, one of the

images is designated as the template image, acting as a measure of the true activa-

tion pattern. At a fixed threshold on the template image, the retest image is assessed

against the template for true and false positive detections, and the resulting true-

positive and false-positive rates are calculated as a function of retest image threshold.

This creates an ROC-reliability curve for the retest image, and this is repeated for

each template image threshold (in increments of 0.1). From this, the retest area under

the curve (AUC) is plotted as a function of template threshold, and the procedure is

repeated with the roles as template and retest image reversed. Currently, the ROC-r

calculation takes only a few seconds on typical fMRI images.

The ROC-r metric ‘reliable fraction’ (FR) was used to measure overall dataset

reliability. The FR is the proportion of the image t-value range for which the AUC

is more than the mid-range (i.e. AUC > [AUCmax+AUCmin]/2). FR was measured

for each pre-processing pipeline, and the best pipeline was identified for each dataset

based on this reliable fraction. Changes in reliability with pipeline optimization were

assessed with paired t-tests at the group level, whereas comparisons between controls

and patients used independent samples t-tests. Images were divided into ‘reliable’

and ‘unreliable’ categories based on whether the reliable fraction was above or below

the (patient) group mean respectively.

ROC-r was also used for automated threshold selection. The threshold was set

where the AUC curve satisfied two conditions: 1) above average AUC (i.e. AUC

> α[AUCmax+AUCmin]/2), and 2) below average AUC derivative (i.e. dAUC/dt

< β[AUCmax-AUCmin]/[tmax-tmin]). The tuning parameters α and β can be used

to increase or decrease the ROC-r thresholds (higher α values tend to increase the

threshold levels, whereas higher β values tend to decrease threshold levels). Herein

they were set to 1 and 1.5 respectively, which provided similar average threshold levels

to the previous control group. [141]
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5.4.5 Cortical Stimulation

CS mapping was performed using an Ojemann OCS-1 cortical stimulator with a

bipolar probe (5 mm spacing) using 0.2-0.5 ms duration pulses. Current levels were

increased incrementally from 4 mA (peak-to-peak) in steps of 2-6 mA to a maximum

of 20 mA or until a response was elicited. Sensorimotor mapping used 5 Hz pulse-

rate, whereas language investigation used 60 Hz, in accordance with standard clinical

practice.

For sensorimotor investigations, involuntary movements and/or reported sensa-

tions were recorded. Language mapping used counting, reciting days of the week,

reciting months of the year, and object naming. Locations that consistently produced

a response were recorded either as sensorimotor or language CS-positive (CS+) result.

Areas that produced no effect were recorded as CS-negative (CS-) locations.

5.4.6 Spatial Correspondence Measurements

To facilitate quantitative spatial comparisons between the pipeline-optimized fMRI

and CS, each stimulation location was digitized in MRI coordinates using a neuro-

navigation system. A digitization of the cortical surface was obtained using the

neuro-navigation system at approximately 0.5 cm spacing across the exposed patch

of cortex. Brain shift was corrected for using iterative closest-point registration, in

order to minimize the sum-of-squares distance between the digitized cortical surface

and the brain surface extracted from the anatomical MRI [161]. This approach is

used routinely for co-registering 3D surfaces [162].

Correspondence was measured by the distance from each CS+/CS- site to the

centre of the nearest active fMRI voxel (using the relevant language or sensorimotor

maps). This was calculated as a function of fixed thresholds, and maps with above

and below average FR were compared. Only CS points at least 1 cm apart were used

to avoid oversampling the CS data, which is typically assumed to deposit current in

approximately a 5-10 mm radius [50].

ROC curves were calculated from the CS-fMRI distances at the ROC-r optimized

thresholds. Sensitivity and specificity were defined in terms of whether or not there

was fMRI activity within a spherical ROI around each CS+/CS- location (see table

5.3). The ROC curves were then calculated by varying the ROI search range criteria
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Table 5.3: Sensitivity (TP/[TP+FN]) and specificity (1-FP/[FP+TN]) were calcu-
lated from the CS-fMRI separation distances. TP = True positive, FP = false-
positive; TN = true-negative; FN = False-negative.

CS+ CS-
fMRI within search range TP FP
No fMRI in search range FN TN

from 0-40 mm, which was more than sufficient to capture the 0-20 mm search ranges

reported in similar studies [57].

5.5 Results

5.5.1 Reliability

The mean FR for the patient group (0.59 ± 0.03) was significantly smaller (p =

1×10−4) than our previous control group (0.72 ± 0.02). Figure 5.1a shows a normal-

ized histogram of the reliable fraction for each group, revealing a higher proportion

of datasets with reliable fractions below 0.4 for the patient group (20% vs. 3%). This

included three images for which no reliable activation was detected. Likewise, there

were fewer datasets in the highest FR range for patients (15% vs 33%), although the

maximum FR was similar for both groups (0.91 vs. 0.89). There was also a signifi-

cant reliability difference between finger tapping and the language tasks, as shown in

Figure 5.1b.

5.5.2 Pipeline Optimization

The mean reliability increased to 0.65 ± 0.02 after pipeline optimization (figure 5.2a).

This was a significant improvement over the default pipeline (p = 7×10−7), although

still significantly lower than the control group (p = 8×10−3). The smallest gains were

made for the finger tapping task (figure 5.2b), although this difference was statistically

significant (p = 0.043). The sentence reading and object naming tasks had more

significant reliability improvements (p = 4×10−5 and p = 8×10−4, respectively).

The default pipeline was optimal most frequently (n = 16), followed by 9 mm

smoothing (n = 12), and 9 mm smoothing with MPR (n = 10). The remaining

frequencies are shown in table 5.4. Overall the three smoothing kernels (3 mm, 6



90

Figure 5.1: Reliability of pre-surgical fMRI measured with the ROC-r reliable fraction:
a) Reliable fraction histograms of patients and controls. b) The FR by task. FT =
finger tapping; ON = object naming; SC = sentence reading.

mm, 9 mm) were chosen 16, 28, and 24 times respectively. MPR was used for 24 of

68 datasets, and ACC were applied to 10 the 68 images.

5.5.3 Spatial Correspondence with CS

CS data were obtained from 11 of 13 patients. In one patient CS had no effect, and

for one other the available CS data were not relevant to the available fMRI datasets.

These 11 patients provided 28 CS+ tags (9 motor, 19 language), and 53 CS- tags.

There were 38 fMRI images that provided relevant comparisons with the CS data (6

motor, 32 language).

The fMRI to CS+ distance increases monotonically with threshold, reaching 10

mm on average at t = 3.4 (figure 5.3). The reliable and unreliable images (i.e. above

and below the group-mean FR) datasets had significantly different spatial correspon-

dence with CS for thresholds between t = 2.5 and t = 16. Co-localization was better

than 10 mm for t < 6.1 for reliable images, as opposed to t < 2.9 for unreliable ones.
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Figure 5.2: Effects of pipeline optimization in the patient reliability: a) the histogram
shows a shift towards higher reliability following pipeline optimization. b) The ma-
jority of the improvement came from the initially less reliable sentence reading (SC),
and object naming (ON) tasks.

For a fixed analysis threshold of t = 6.0, the mean fMRI-CS+ distance was 9.9 ± 0.9

mm for reliable maps, and 41 ±5 mm for unreliable datasets.

5.5.4 Automatic Thresholding

The average ROC-r automated thresholds were 6.1 ± 0.1. The average ROC-r thresh-

olds were higher for the unreliable datasets (6.3 ± 0.2) than the reliable datasets (5.7

± 0.2). Representative thresholded fMRI/CS datasets for typical patients are shown

in figure 5.4, for both a reliable motor and language image. The language data shown

are from the object naming task, which was the least reliable of the pre-surgical tasks.

Nonetheless the example shown was above average when compared to the group mean.

Figure 5.5 shows the sensitivity and specificity of the automated thresholds for

detecting eloquent cortex for search ranges from 0 to 40 mm. For a search range of 10

mm, overall sensitivity/specificity was higher for the ROC-r thresholds (50%/87%)
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Table 5.4: Optimized pre-processing pipelines. A wide range of pipelines were used
based on their ROC-r FR scores. MPR = motion parameter regression; ACC =
autocorrelation correction.

Smoothing MPR ACC Freq.
3 mm On On 0
3 mm Off On 2
3 mm On Off 6
3 mm Off Off 8
6 mm On On 2
6 mm Off On 4
6 mm On Off 6
6 mm Off Off 16
9 mm On On 0
9 mm Off On 2
9 mm On Off 10
9 mm Off Off 12

Figure 5.3: Average CS+ to fMRI distance as a function of analysis threshold. The
separation between the CS+ and nearest fMRI activation increases with threshold.
At very high thresholds, there is little-to-no activation remaining, resulting in very
high CS-to-fMRI distances. The spatial correspondence is better for the more reliable
datasets for most of the threshold range.
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Figure 5.4: Example reliable thresholded activation maps for a) finger tapping and b)
the object naming tasks. Corresponding ROC-r curves and thresholds are indicated
in c) and d) respectively. Activation maps are shown for the test (blue) and retest
(red) with overlap in purple. The CS+ (green circles) and CS- (red circles) locations
are also shown. In a) the CS+ locations produced: 1,2) right hand twitch; 3,4) right
wrist flexion. In b) the CS+ locations produced: 1-3) babbled speech; 4) speech
interruption; 5) tingling sensation in lips. The ROC-r plots also show the mean
ROC-r curves for each task from the patient group (black). For the object naming
data shown, substantial motion was present (∼ 1 mm), as is typical for this task. In
this case, motion regression did not improve the reliability of the activation mapping.
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than fixed thresholds (t = 6.0; 42%/84%). Increasing the search range to 15 mm

produced 64%/76% sensitivity/specificity, whereas decreasing it to 5 mm produced

29% sensitivity and 94% specificity.

Figure 5.5: a) ROC curves and b) sensitivity (solid lines)/specificity (dashed lines)
versus search range for localization of eloquent cortex (i.e. CS sites) using ROC-r
thresholded maps. As the search range around each CS location is increased from 0 to
40 mm, the sensitivity increases and specificity decreases. The reliable datasets have
higher sensitivity than the unreliable datasets for a given search range. Conversely
the same sensitivity and specificity can be obtained using a smaller search range for
the reliable datasets than the unreliable ones.

Reliable datasets were more sensitive but less specific than unreliable ones. For a

15 mm search range the sensitivity/specificity was 89%/59% and 44%/87% for reliable

and unreliable images respectively. The reliable datasets were somewhat more sensi-

tive and significantly more specific (p < 0.05, two-proportion z-test) when thresholded

using the ROC-r algorithm (89%/59%) than fixed thresholds (82%/47%), whereas

there was little difference in the two approaches for unreliable datasets (47%/85% vs.

42%/89%).
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5.6 Discussion

5.6.1 Reliability of Pre-surgical fMRI

We found that the reliability of pre-surgical fMRI in brain tumor patients was lower

than that of healthy controls (Hypothesis 1). In the case of brain tumor patients, this

may be related to issues including difficulty with task performance due to functional

deficits, and increased propensity for motion during scanning. However, this result

is likely not specific to brain tumors. Lower reliability has previously been shown

using intraclass correlation (ICC) in schizophrenia [163], although later no significant

difference was seen using test-retest overlap [164]. Decreased patient reliability was

also observed for multiple sclerosis [110], and mild cognitive impairment [159]. While

the situation is not as clear for stroke patients, Kimberley et al. [99] and Eaton et

al. [165] found increased between-subject variability falsely inflated the individual

ICCs. Reliability measures using only within-subjects factors may therefore be more

appropriate for comparing patient populations.

We observed higher reliability for finger-tapping compared to language tasks. This

agrees with the review of Bennet and Miller [92], which showed that sensory/motor

tasks are more reliable than higher cognitive tasks. The higher rate of false pos-

itive/negative voxels for cognitive tasks likely relates to the smaller fMRI signal

changes typically evoked by these tasks, resulting in noisier time-course data.

5.6.2 ROC-r Pre-processing Optimization

We demonstrated optimization of individualized pre-processing pipelines using ROC-

r analysis (Hypothesis 2). There was a high degree of heterogeneity between subjects,

which agrees with previous reports on pipeline optimization [58, 158]. Only spatial

smoothing and rigid motion correction have been found to be widely beneficial across

subjects [58, 61, 158], which agrees with our results. The least reproducible pipelines

were those that included both MPR and ACC, suggesting that over-fitting the data is

detrimental to reproducibility of the activation maps. In the context of pre-surgical

mapping, these results make it clear that advanced analysis strategies should only

be adopted on an as-needed basis, and only in the presence of empirical evidence

supporting their use.
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The cognitive tasks benefitted the most from pipeline optimization. Partly, this

represents a ceiling effect for the finger-tapping task, which was highly reliable with

the default pre-processing pipeline. Motion parameter regression was used more fre-

quently for the object naming task (12/26) than the finger tapping task (4/22), likely

because of task-induced motion. A bias towards low smoothing (3 mm FWHM) for

the sentence reading task (10/20) compared with the other tasks (6/48) was observed,

which is consistent with smaller activation foci. With sufficient sample size, similar

differences could be observed for other task comparisons, and reflect the lack of a ‘one

size fits all’ approach to analysis of neuroimaging data. ROC-r analysis improves clin-

ical fMRI methodology by selecting the most appropriate pipeline on a case-by-case

basis, with the additional benefit of reduced reliance on expert intervention in the

production of fMRI maps.

5.6.3 Clinical Utility of ROC-reliability Analysis

Datasets with higher reliable fractions were shown to have a better spatial correspon-

dence to CS results (Hypothesis 3). This extends the earlier findings of Beisteiner et

al. [39], which showed that reliably activated voxels co-localized with CS+ results. By

identifying images unlikely to produce useful results as soon as the scan is completed,

ROC-r analysis can guide decisions on data rejection and scan repetition. Conversely,

datasets with high ROC-r reliable fractions can be used for pre-surgical mapping with

enhanced confidence. This has clear clinical utility, as the risk of false-negative find-

ings due to poor quality scans is reduced.

The sensitivity/specificity to CS depended on the search range used for matching

CS results, as has been shown previously [54]. For a conventional 10 mm search

radius, our overall sensitivity (50%) and specificity (87%) were similar to those found

by Roux et al. [51] in 2003 (45-54% and 95% respectively). Overall, the sensitivity

of the fMRI results suggests that the use of intra-operative mapping is still vital

to guide surgical resection, in agreement with outcome based studies such as Spena

et al. [166]. Nonetheless, ROC-r optimization improves the predictive power of the

fMRI results, and therefore increases the utility of the pre-surgical mapping. The

addition of ROC-r analysis to an fMRI protocol helps to ensure that the best results

are produced from the available data.
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Other studies have found higher sensitivity than specificity for pre-surgical fMRI

[47, 51, 154], but frequently employ multiple tasks to increase the likelihood of a

positive prediction. For instance, Rutten et al. [154] found 22-70% sensitivity and

73-93% specificity depending on the language task used, but increased sensitivity to

92% and decreased specificity to 61% by combining five tasks. Roux et al. [51] also

used multiple tasks to increase sensitivity from approximately 50% to 66%, at the

cost of decreased specificity (from 95% to 91%). In our study we only compared

single tasks to CS. While we could achieve higher sensitivity by combining tasks, the

clinical fMRI time constraints often limit the number of tasks and repetitions possible.

These results show that task repetition is an alternative approach to enhance both

sensitivity and specificity of fMRI pre-surgical mapping.

Another methodological consideration is the threshold levels used in previous stud-

ies, which are often lower than those determined by the ROC-r method. Rutten et

al. [154] showed a decrease in sensitivity from 99% to 47% when the thresholds were

increased from t = 2.5 to t = 4.5. They observed a concomitant increase in specificity

from 23% to 80%. Higher sensitivity is desirable for pre-surgical fMRI to avoid false

negatives, so future investigation could focus on optimizing the ROC-r α and β pa-

rameters to lower the threshold levels. This will provide the benefits of individualized

thresholds with increased sensitivity.

There are several variables affecting fMRI-CS correspondence that we were un-

able to explore due to sample size and heterogeneity. For example, Pouratian et

al. [49] found 33-70% specificity depending on the region of the brain being mapped

(frontal/temporal). Bizzi et al. [54] showed that both sensitivity and specificity were

higher for motor tasks (88% and 87% respectively) than language tasks (80% and

78%). This study also showed that sensitivity was higher for WHO grades II and III

gliomas (93%) than grade IV (67%), whereas specificity showed the opposite depen-

dence (76-79% versus 93% respectively). We had a high number of grade IV gliomas

in our study, which likely contributed to the overall sensitivity. Larger sub-samples

would be required to confirm this hypothesis.

Importantly, no previous study has demonstrated metrics available at the time of

scanning that correlate with co-localization of fMRI and CS. We found higher sen-

sitivity for datasets identified by ROC-r as reliable (66% for a 10 mm search range)
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than unreliable (36%). This difference was even more dramatic using larger search

ranges (e.g. 89% vs. 44% at 15 mm). While specificity was higher for unreliable

images, this was accompanied by unacceptable false-negative rates (> 50%), likely

because there was little to no activation above threshold in these images. Further-

more, for any fixed sensitivity level above 50%, the specificity of the reliable datasets

was actually higher than the unreliable images, as a smaller search range can be used

(Figure 5.5). The ability of ROC-r to predict useful fMRI images provides a critically

needed quantitative tool for assessing fMRI image quality in a clinically meaningful

way.

5.7 Conclusion

We demonstrated that ROC-r is sensitive to differences in reliability between patient

and control groups. The FR quantifies the effects of pre-processing pipelines, en-

abling subject-specific strategies, and is especially beneficial for difficult applications

like cognitive tasks and subject motion. ROC-r metrics were shown to predict co-

localization, and can potentially be used to guide decisions regarding data rejection

and scan repetition at the time of the scan. Finally, ROC-r can determine automated

threshold levels, with higher sensitivity and specificity for eloquent cortex than a fixed

threshold approach. In combination, these capabilities allow for fully automated and

individualized fMRI processing. By facilitating push-button, yet individualized anal-

ysis, ROC-r reduces the need for expert intervention in data processing, increasing

usability in the clinic, and furthering the impact of pre-surgical fMRI.
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6.1 Motivation

The final manuscript of this thesis ties together the previous works. So far, ROC-r

has been demonstrated to provide quantitative quality assurance for MEG and fMRI,

to be useful for determining optimal pre-processing pipelines, and to produce robust

individualized thresholding for single-subject imaging. In this paper, we directly

evaluate ROC-r as a unified framework for reliable single-subject MEG and fMRI

mapping. This work shows that by using optimized single-subject pipelines, similarly

robust fMRI and MEG maps can be obtained automatically. This is an important

result, as the use of fixed analysis pipelines could bias the comparison of fMRI and

MEG reliability, and we have demonstrated that there is no universally best set of

processing choices. In this paper, we include a patient case showing verification of the

automated MEG and fMRI maps by co-localization with cortical stimulation. This

manuscript thus shows that the ROC-r analysis framework leads to a unified approach

to robust, push-button, and individualized processing of single-subject fMRI/MEG

mapping.

99
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6.2 Abstract

Purpose: Both functional MRI (fMRI) and Magnetoencephalography (MEG) have

demonstrated potential as methods for pre-surgical mapping of brain function, and

present unique technological and clinical benefits and drawbacks. Objective compar-

ison of these technologies is hampered by the difficulty in comparing data processing

pipelines and analysis choices at the single-subject level. We have evaluated a receiver

operating characteristic reliability (ROC-r) based approach that solves this problem

through an automated and data-driven approach. ROC-r quantitatively optimizes

pre-processing pipelines and determines data-driven thresholds for both fMRI and

MEG, using a unified approach across scanning modalities.

Methods: We demonstrated ROC-r for optimizing both functional MRI (fMRI)

and magnetoencephalography (MEG) mapping of the primary motor cortex in 20

healthy controls. For fMRI, we tested two general linear models, with/without auto-

correlation corrections, and with/without motion parameter regression. For MEG,

we tested two trigger sources, with/without independent component analysis for ar-

tifact removal, and with/without low-pass filtering. Automated thresholds were de-

termined for each subject using the optimally pre-processed data. We demonstrated

our approach in a patient case, by comparing the pre-surgical mapping locations to

intraoperative measurements.

Results: A wide variety of optimal pipelines were identified across subjects. MEG

reliability depended more strongly on the pre-processing pipeline than fMRI, but the

reliability of the optimal pipelines were similar for fMRI (0.69 ± 0.02) and MEG (0.71

± 0.03). ROC-r optimized thresholds identified activation near the central sulcus for

all fMRI datasets and 28/32 MEG datasets. The peak overlap of the individual level

maps occurred in the primary sensorimotor cortices, reaching 88% overlap for fMRI

and 80% overlap for MEG. The patient case demonstrated that the ROC-r automated

mapping co-localized with the primary motor cortex as identified intra-operatively.

Conclusion: ROC-r optimization of fMRI and MEG pre-processing pipelines pro-

vided robust pre-surgical mapping, including automated data-driven thresholding,

as demonstrated by co-localization with intra-operative measures. ROC-r allows for

push-button analysis, streamlining the clinical implementation of functional map-

ping, and removing the need for manual intervention and selection of pre-processing
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pipelines. Crucially, ROC-r permits a more fair comparison of functional mapping

data quality in fMRI and MEG by removing the variability due to subjective data

analysis decisions.

6.3 Introduction

Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG)

are safe and non-invasive means of localizing brain function, and thus attractive op-

tions for pre-surgical mapping [23, 29, 167, 168]. MEG is considered the more direct

technique, measuring the magnetic fields produced by synchronous post-synaptic po-

tentials [70], whereas fMRI measures brain activity indirectly through hemodynamic

coupling [69]. This fundamental difference leads to the unique strengths and weak-

nesses of each technology. For example, spatial resolution is considered superior for

fMRI, whereas the temporal resolution of MEG is advantageous when the dynamics

of neural activity are of interest [169]. The two modalities are complementary, and

getting the most out of their combined use is crucial for applications like pre-surgical

mapping [169–182].

There are a vast number of methods available for analyzing fMRI and MEG data

[183]. This is both an advantage, as it offers flexibility in extracting information

from neuroimaging data, but also a burden, as the quality of the resulting maps will

depend on the analysis methods chosen. The wide range of analysis strategies provides

a particular challenge in single-subject studies encountered in clinical applications,

as both fMRI and MEG are accompanied by a significant amount of inter-subject

variability [155, 158, 184–188]. Individually tailored analysis strategies are required

to overcome differences like subject motion during scanning, physiological noise from

heart or breathing rhythms, and modulation of the cortical response by attention or

arousal during the scan [60]. For example, motion regression can eliminate motion

correlated signals, but in some cases this may result in unacceptable reduction of

sensitivity. Manual evaluation of all pre-processing options is overwhelmingly time

consuming, and the selection of appropriate analysis strategies on a single-subject

level is therefore a formidable task [158,186].

To address the difficulty of creating individualized data processing strategies in
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fMRI and MEG, we recently developed a method of automatically selecting subject-

specific processing pipelines using test-retest receiver operating characteristic relia-

bility (ROC-r) [141]. This method can be applied to any volumetric source mapping

pipeline, and optimization can be performed by selecting the pipeline with the highest

within-subject reliability. ROC-r evaluates pre-processing pipelines solely in terms of

the final activation maps, which forms the common link between fMRI and MEG

source imaging. Therefore, unlike previous methods of fMRI pre-processing pipeline

optimization like NPAIRS (nonparametric prediction, activation, influence and repro-

ducibility resampling) [58, 61, 157, 158], ROC-r works without modification for MEG

mapping. Additionally, this analysis produces threshold-dependent reliability esti-

mates, which in turn can be used to determine data-driven thresholds, allowing for

fully automated production of activation maps. ROC-r is highly advantageous in clin-

ical settings as it eliminates the influence of the experimenter on the final activation

maps, and provides a unified framework for optimizing fMRI and MEG processing

choices.

In this study, we evaluate our unified approach to automated pipeline selection

and activation thresholding for fMRI and MEG using ROC-r analysis. We applied

this method to pre-surgical mapping of primary sensorimotor cortex by using identical

stimulation paradigms in MEG and fMRI, including both a group of healthy controls

and a demonstrative patient case. For the patient volunteer, we demonstrated the

non-invasive mapping results by comparison with electrophysiological measurements

performed during surgery. Importantly, by using data-driven analysis pipelines, we re-

duce the potential for missing important activation due to sub-optimal pre-processing

strategies. Furthermore, by working within an automated analysis environment, we

eliminate the need for expert intervention in the process. By introducing a common

framework for optimization of fMRI and MEG pre-processing pipelines, we ensure

that comparisons of the fMRI and MEG results are not biased due to poor choices in

the data analysis chain.
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6.4 Methods

6.4.1 Processing Pipeline Optimization

ROC-r analysis was used for pre-processing pipeline optimization and adaptive thresh-

olding of both fMRI and MEG maps. ROC-r measures reliability by calculating the

amount of overlap in the active/inactive regions of test-retest maps as a function of

analysis threshold. This is summarized by plotting the ROC area-under-the-curve

(AUC) as a function of image threshold (Figure 6.1). To permit ROC-r analysis,

three runs of the functional task were performed within both the fMRI and MEG

sessions, and all six pairings (i.e. all combinations of each of the three images as tem-

plate for the other two) of the three runs were submitted to a ROC-r analysis. This

produced six AUC plots for each pre-processing pipeline (see below) applied to the

data. While more repetitions of the functional task could have been used to further

average the ROC-r estimates, three repetitions provided adequate balance between

convergence and scanning time. The ROC-r methodology is described in detail in

Stevens et al. [141].

The reliable-fraction (FR) metric was used to measure overall test-retest reliability

from the AUC versus threshold plots. This is calculated as the fraction of the thresh-

old range for which the AUC is above its mid-range (i.e. 0.5[AUCmax+AUCmin], see

Figure 6.1). Reliable fraction is bounded by 0 and 1, with high values indicating that

reliability increases quickly with image threshold. The reliable fraction was calculated

for the six test-retest pairings, and an average for each pipeline was determined. The

pipeline with the highest reliable fraction was selected on a subject specific basis. At

the group level, differences between the pipelines were assessed using ANOVA (p <

0.01).

After pipeline optimization, ROC-r adaptive thresholds were determined for each

MEG and fMRI map. The thresholds were selected from the AUC plots as the lowest

threshold with an AUC above the mid-range, and a rate of AUC increase below the

‘linear rate’ (i.e. [AUCmax-AUCmin]/[tmax-tmin]). This provides a balance between

the high test-retest reliability and high sensitivity, by avoiding the diminishing returns

in reliability at high thresholds (Figure 6.1). The ROC-r thresholds were determined

for each of the six test-retest pairings, and the average threshold was applied to
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Figure 6.1: Schematic of the ROC-r output parameters. The mean ± standard de-
viation of the AUC versus threshold for the six image pairings is shown (solid line
with error bars), along with the mid-range value (dashed lines) and the ‘linear-rate’
(dotted line). The ROC-r optimized threshold is identified as the lowest threshold for
which the AUC is above the mid-range, and the rate of AUC increase drops below
the linear-rate (dash-dotted lines).

the average of the three maps to produce a final activation map. To demonstrate

robustness, the thresholded maps were transformed into standard space, and the

number of single-subject datasets that identified activity in each voxel was summed.

Areas with high values in this group overlap map were thus consistently detected

across subjects.

6.4.2 Subjects

Twenty healthy controls (33 ± 13 years of age; 12 females; 17 right handed) volun-

teered for this study. All participants provided informed consent, and the study was

performed in compliance with the local research ethics board (Capital District Health

Authority REB, Halifax, NS). A patient case with planned intraoperative electrical

stimulation mapping was also studied to demonstrate the application of these methods

to pre-surgical mapping directly. All participants performed within-session test-retest

fMRI and MEG imaging, and the order of the two modalities was counterbalanced
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across subjects.

6.4.3 Stimulation Paradigm

Both MEG and fMRI mapping were performed using an identical stimulation paradigm

for localization of the primary sensorimotor cortex. The task consisted of word pairs

presented in serial order, which were either semantically related (50%) or unrelated

(50%) to one another. The subjects were asked to respond by squeezing their left

or right hand for related and unrelated word-pairs respectively, using a grip-force

response device. The task was presented in a series of six task (40 s) and seven

rest (20 s) blocks, for a total time of 6 minutes 20 seconds. The tasks blocks were

made longer than the rest blocks in order to increase the number of stimuli per run,

which increases the SNR of the MEG evoked responses (see below). Within each task

block, 15 word-pairs were presented, with each word appearing for 600-800 ms, and

a 900-1800 ms inter-stimulus interval (ISI) between word pairs. The duration of the

stimuli, the ISIs, and the order of the related/unrelated pairs were randomized to

avoid anticipatory effects. The rest blocks consisted of simple fixation on a central

target. The task was repeated three times within each session to facilitate ROC-r

analysis. No words were repeated across the task repetitions.

6.4.4 MRI Acquisition

Participants were scanned using a 4 Tesla MRI system (Varian INOVA). Anatomical

scans were acquired using a T1-weighted MP-FLASH sequence (TE = 5 ms; TR = 11

ms; 256 x 256 x 128 grid at 1 x 1 x 2 mm resolution). Functional scans used a spiral

pulse sequence (TE = 15 ms; TR = 2 s; α = 60◦; 64 x 64 x 31 grid at 4 x 4 x 3.5 mm

resolution; 0.5 mm slice gap). The grip-force device was recorded from continuously

to monitor participants’ responses. Deviations from baseline greater than 10% of the

device’s dynamic range were marked as response events.

6.4.5 MRI Processing

The anatomical MRI was segmented using Freesurfer [189]. The resulting brain-only

image was used for registration with the fMRI data, and the outer head surface was

subsequently used to setup the MEG forward solution. Functional MRI registration
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used within-run rigid body motion correction, followed by between-run rigid body

alignment, and finally affine transformation to register to individual anatomical space.

Functional MRI maps were produced using the general linear model (GLM) ap-

proach with FSL software [190]. Eight fMRI pre-processing pipelines were investi-

gated, including: 1) using the stimulus (related vs. unrelated pairs) or response (left

vs. right hand squeeze) timing for GLM analysis, 2) with or without motion parame-

ter regression in the GLM, and 3) with or without auto-correlation correction (ACC).

Both GLM contrast choices were designed to produce a single image in which the

left and right hand appeared as positive and negative task correlation respectively,

in order to produce maps with high specificity to the primary sensorimotor cortices.

The related versus unrelated word stimuli contrast is only expected to work well

when subjects’ response accuracy is high. All pre-processing pipelines used a 6 mm

FWHM smoothing kernel and a 100 s high-pass filter. Each pre-processing pipeline

was analyzed with ROC-r, and the pipeline with the highest reliability was chosen.

6.4.6 MEG Recording

Head position was monitored during MEG scanning using head position indicator

(HPI) coils placed on the left/right temples and mastoids. The head surface, HPI

coil locations, left/right pre-auricular points, and the nasion were digitized using an

Isotrak system (Polhemus Inc., Colchester, USA). Surface electrodes pairs were placed

above and below the left eye to record eye blinks, and on the left and right flexor carpi

radialis to record the EMG at movement onset. MEG data were collected at 1000

Hz sampling frequency, using a Neuromag (Elekta AB, Stockholm, SE) 306 channel

whole-head system. The grip-force device was recorded from continuously, as in the

fMRI experiment. HPI coils were recorded continuously to monitor head movement

during the MEG scans.

6.4.7 MEG Processing

MEG data were band-pass filtered (1-60 Hz), and down-sampled to 500 Hz. The

following pre-processing pipeline choices were analyzed using ROC-r analysis: 1)

with or without independent component analysis (ICA) for removal of artifacts, 2)

epoch extraction relative to either force onset or EMG onset, and 3) with or without
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an additional low-pass filter (20 Hz). Force onsets were detected by thresholding the

grip-force signal at 10% maximum, and EMG onset detection additionally employed

a band-pass filter (2-4 Hz) after rectification, in order to isolate the envelope of the

EMG signal. For ICA denoising, components were removed if they satisfied any of the

following conditions: a) correlation greater than 0.4 with the vertical eye electrode

signal, b) frequency matching the heart rate range, or c) amplitude outside of the

physiological range (i.e. greater than 7.5×10−11 Tesla/cm for planar gradiometers or

2×10−12 Tesla for the magnetometers).

Source mapping was performed using a dynamic (i.e. 3D+time) beamformer.

Epochs were extracted for the left and right hand separately from -1000 ms to +500

ms relative to the EMG/force onset triggers. Unlike the fMRI analysis, this procedure

produces independent images of the left and right hand, as specificity of the MEG

maps can be achieved by exploiting the temporal resolution. Epochs were baseline

corrected for -1000 to -500 ms, and the baseline covariance was calculated from the

same time range. Sensor covariances for the active period were taken from the -100

to +100 ms window for the force-triggered epochs and +100 to +300 ms for the

EMG trigger, as the largest evoked field was observed near the center of these latency

ranges. The forward solution was calculated according to the boundary element

method (openMEEG software), using the external head surface boundary produced

during Freesurfer segmentation. The MEG and anatomical data were registered semi-

manually (manual alignment to Isotrak anatomical landmarks, followed by iterative

closest point registration of the head shape). Within this head-shaped boundary, a

4 mm grid was constructed, and the beamformer solution was calculated for each

location on this grid, matching the spatial resolution used in the fMRI acquisition.

The latency with the largest source amplitude in the pre- or post-central gyri was

extracted as the final source map.

6.4.8 Intraoperative Mapping

For the patient case, intra-operative mapping was also performed to validate the

non-invasive techniques. A linear strip of six subdural electrodes was used both for

detecting phase reversal of sensory evoked potentials in response to electrical stimula-

tion of the contralateral ulnar nerve, and to elicit EMG activity in the abductor digiti
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minimi or adductor hallucis brevis by stimulating between pairs of electrodes (2-10

mA, 60 Hz, 0.5 ms pulses). Results of the intraoperative mapping were recorded onto

the patient’s pre-surgical MRI image using a StealthStation (Medtronic, Minneapolis,

USA) neuro-navigation system.

6.5 Results

We successfully mapped the primary motor cortex by both fMRI and MEG in the

majority of subjects. Four subjects were excluded, due either to compliance issues

during scanning (N = 3) or incidental findings on the MRI in the vicinity of the

motor cortex (N = 1). Reliability of the fMRI and MEG maps was generally high,

although more strongly dependent on the pre-processing pipeline for MEG. After

pipeline optimization, the reliability of fMRI (FR = 0.69 ± 0.02) and MEG maps

were similar (FR = 0.71 ± 0.03). ROC-r automated thresholding produced robust

localization of the primary motor cortex for both fMRI and MEG in the majority of

healthy controls, and this localization was confirmed in a patient case using intra-

operative electrocortical mapping methods.

6.5.1 Pre-processing Optimization

On average, there was no significant difference in reliability between the fMRI pipelines

(Figure 6.2a). However, the pipeline using the response-based GLM, with ACC but

without MPR, had the highest reliability more than twice as often as any other

pipeline (Figure 6.2b). Seven of the eight fMRI pre-processing pipelines were optimal

for at least one of the 16 healthy control datasets. There was a clear tendency for the

response-based GLM model to provide more reliable maps than the stimulus-based

model (13/16), as the stimulus based model assumes response accuracy, and is less

time-locked to the responses. While accuracy was in general high (95 ± 5 percent),

the response based model was still superior in general. The use of ACC (10/16) or

MPR (6/16) produced more equivocal results, suggesting that despite their common

use in fMRI analysis pipelines, neither are universally beneficial to the production of

robust fMRI maps.

For MEG, 7/8 pipelines tested were optimal for at least one dataset. Maps using

the force-onset trigger were significantly more reliable (FR = 0.57 ± 0.02) than those
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Figure 6.2: a) Average reliability of the fMRI maps by pre-processing pipeline. There
was no significant difference between the pre-processing pipelines at the group level
for fMRI. b) The number of individual fMRI datasets for which each pipeline had
the highest ROC-r FR. At the individual level the best pre-processing choices were
highly subject dependent, and all but one pipeline was optimal at least once. The
response-based GLM was best in the majority (13/16) of datasets, whereas other
pre-processing options produced more variable results.
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produced using the EMG-onset trigger (FR = 0.39 ± 0.02). However, pipelines using

the EMG-onset trigger were optimal for 7/32 datasets (Figure 6.3). Pipelines with

ICA artifact removal produced significantly lower reliability (0.45 ± 0.02) than those

without ICA (0.51 ± 0.02), and ICA was rarely selected by individual-level pipeline

optimization (5/32). Pipeline optimization improved the reliability significantly com-

pared to any of the fixed analysis pipelines (p < 0.05). The most common optimal

pipelines for the MEG data thus used the force-onset trigger, without ICA artifact

removal, with (8/32) or without (13/32) low-pass filtering.

6.5.2 Automated Thresholding

A representative automated thresholding result is shown in Figure 6.4. ROC-r thresh-

olds maps identified activity around the central sulcus for all 16 fMRI maps, 13/16

left hand MEG maps, and 15/16 right hand MEG maps. The datasets which failed

to identify activity had significantly lower reliability (0.48 ± 0.05 vs. 0.78 ± 0.03). In

one case, this was associated with a moderate amount of subject motion (∼1-2 mm),

but in other cases we could determine no obvious explanation. Threshold levels were

much higher for fMRI (4.0 ± 0.3) than MEG (0.22 ± 0.06), as the two modalities used

different statistical measures (z-statistic versus pseudo-z), with different magnitude

scales. For MEG, localization was consistent with the primary motor cortex in the

pre-central gyrus, whereas the fMRI activity tended to localize just posterior to the

hand knob, in the primary sensory cortex of the post-central gyrus (Figure 6.5). MEG

locations were somewhat more variable than fMRI, resulting in lower between-subject

overlap for MEG (80%) than fMRI (88%).

6.5.3 Patient Case

A right handed female patient (56 years of age) with a tumor in the left supplemen-

tary cortex performed the same fMRI and MEG protocol, to demonstrate the validity

of the automated ROC-r processing approach in the context of intra-operative stimu-

lation mapping. The patient presented with seizures involving repetitive speech and

expressive aphasia. Complete resection of the tumor was achieved during surgery,

after which the patient experienced transient aphasia and right hemiparesis. The pa-

tient was discharged two weeks after surgery, and underwent six weeks of rehabilitative
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Figure 6.3: a) Average reliability of the MEG maps by pre-processing pipeline. Force-
onset triggering produced more reliable results than EMG-onset triggering, and ICA
artifact removal was associated with a decrease in reliability of MEG maps. Pipeline
optimization provided a significant improvement in reliability across the group. b)
The number of individual MEG datasets for which each pipeline had the highest
ROC-r FR. The force-onset triggered pipelines were best in the majority (25/32) of
datasets, and ICA denoising was recommended rarely (5/32 datasets), in agreement
with the overall reliability trends.
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Figure 6.4: Single-subject ROC-r reliable fraction averaged across image pairings
(top), automated threshold selection (middle), and the resulting activation maps
(bottom). The fMRI contrast used (left vs right hand) produced a single map with
activity in both hemispheres (a), whereas for MEG the left (b) and right (c) hand
epochs were mapped separately. For fMRI, the best pipeline in this case used the
response-based GLM, with MPR and ACC corrections. For MEG, the best pipeline
was different for the left hand (force trigger, without ICA but with low-pass filtering)
and right hand (force trigger, with neither ICA nor low-pass filtering). Both the fMRI
and MEG activation in this subject straddled the central sulcus, at the level of the
hand-knob.



113

Figure 6.5: Group overlap of individual-level maps for both the left and right hands.
The peak overlap was higher for fMRI maps (88%) than MEG maps (80%). While
both peaks occurred near the ‘hand knob’ area of the central sulcus, the fMRI peak
occurred in the post-central gyrus, whereas the MEG peak occurred in the pre-central
gyrus. The central sulcus is highlighted in green.

work, after which the post-operative deficits were essentially resolved. Histopathology

identified the tumor as a WHO grade II oligoastrocytoma.

Intra-operative mapping with electrocortical stimulation produced right abductor

digiti minimi and adductor hallucis brevis activity when the most posterior pair of

sub-dural electrodes were stimulated at 8.5 mA (Figure 6.6). In recording mode,

phase reversal was observed between the same pair of electrodes upon ulnar nerve

stimulation, confirming the location of the right hand on the central sulcus. The

ROC-r optimized fMRI and MEG maps both produced focal activation straddling the

central sulcus and directly underlying the intra-operative locations, demonstrating a

high degree of concordance between the non-invasive and invasive mappings.
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Figure 6.6: Patient case demonstrating correspondence of the non-invasive mapping
results with gold-standard intraoperative measurements. The ROC-r optimized fMRI
(left) and MEG (right) mapping of both the left (yellow-red) and right (blue-green)
hand are shown. A strip of 6 subdural electrodes (red and green circles) was used to
map the primary sensorimotor cortex intraoperatively. Electrical stimulation between
the two red circles produced EMG activity in the right abductor digiti minimi and
adductor hallucis brevis, and ulnar nerve stimulation produced phase reversal between
the same electrode pair, thus localizing the central sulcus. The MEG and fMRI maps
were highly co-localized, and both provided accurate prediction of the location of the
hand representation in the primary sensorimotor cortex.

6.6 Discussion

We successfully demonstrated ROC-r analysis as a unified framework for automated

optimization of subject-specific fMRI and MEG pre-processing pipelines. On aver-

age, MEG reliability was more dependent on the pre-processing pipeline than fMRI.

However, pipeline optimization was still beneficial for fMRI analysis, as demonstrated

by the wide variety of optimal pipelines at the single-subject level. It is known that

there is an interaction between the functional task paradigm employed and the effect

of pre-processing options [157,183]. Therefore, even though the use of MPR was often

not recommended in our study, this likely depends on the amount of subject motion,

and the degree of correlation between head motion and the task timing. Additionally,
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while ICA is commonly used to remove eye-blink artifacts from MEG data, we did

not observe obvious eye blink artifacts in the evoked responses in our study, and ICA

was not usually recommended. Using ROC-r for pipeline optimization, ambiguity in

the best approach for a particular dataset can be resolved directly in terms of reli-

ability of the resulting maps. The adoption of data-driven pre-processing pipelines

facilitates comparisons between fMRI and MEG results, as the best results of each

modality are put forward.

Using explicit evaluation of pre-processing pipelines, we found that some com-

monly employed analysis strategies were not recommended for our data. For example,

averaging to force-onset was generally preferable to averaging to EMG-onset for the

MEG source mapping. This is contrary to the methodology typically employed in

mapping primary motor cortex in MEG studies [32,191], which usually employ EMG

triggering. Partly, this discrepancy may be related to small oscillations on the EMG

signal that were observable approximately 100-200 ms prior to the force onset, likely

caused by anticipatory pre-movement muscle activity. Furthermore, some subjects

had difficulties relaxing their muscles completely between stimuli, resulting in some

tonic activity on the EMG sensors. These undesired oscillations made the detection

of EMG onset more dependent on the specific frequency filter and threshold used

to define the trigger, and introduced variability in the trigger latencies. The fidelity

of the grip-force signal was higher, making it more robust for detecting the latency

of force-onset. This further illustrates the importance of quantitative evaluation of

pre-processing choices, as the best results are highly dependent on the details of the

task paradigm, data acquisition, and subject performance.

The pipelines investigated here only represent a small fraction of the potential

pre-processing choices that are made routinely during analysis of fMRI and MEG

images. Inevitably there are other fMRI pre-processing choices that will have a more

significant impact on reliability, and these need to be assessed on a case-by-case basis.

Ultimately, the more pipelines included in a ROC-r analysis, the greater the potential

benefit in terms of activation reliability.

ROC-r analysis not only determines optimal subject-specific pre-processing pipelines,
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but also produces data-driven thresholds for automated localization of activated re-

gions. In many cases, the thresholded fMRI and MEG maps overlapped in the ‘hand-

knob’ of the primary motor cortex, however the MEG maps tended to reach maximum

in the pre-central gyrus (the primary motor cortex), whereas the fMRI maps tended

to peak in the post-central gyrus (the primary somatosensory cortex). This discrep-

ancy is likely due to sensory feedback from the hand-squeeze combined with the low

temporal resolution of fMRI compared to MEG. The slow hemodynamic response of

fMRI essentially acts as a low-pass temporal filter, taking up to six seconds to peak.

As the motor cortex activation and subsequent sensory feedback are likely to occur

in very close succession, these signals cannot be distinguished from one another by

fMRI. The forceful hand-squeeze movement used in this study is particularly likely

to evoked a strong sensory response. In contrast, the millisecond temporal resolution

of MEG produces motor and sensory signals that are easily separated in the evoked

response. Additionally, with the evoked responses being time-locked to the EMG or

grip-force signal, the later sensory response is less likely to produce a strong average

due to latency variability.

Both fMRI and MEG were generally successful at identifying the primary senso-

rimotor cortex, as demonstrated explicitly with the patient case presented. In this

case, we were able to identify with high specificity the hand representation in the

primary sensorimotor areas. This case showed that, although at the group level

there were slight differences in the fMRI and MEG localization, in individual sub-

jects this was not necessarily true. The recommendation of one scanning modality

or the other would likely be decided by patient-specific details rather than the dif-

ferences in localization (e.g. in the case of a high grade glioma, fMRI contrast may

be affected [56, 192, 193], rendering MEG preferable). This may not generalize to

other task paradigms, as fundamental differences in fMRI and MEG sensitivity may

come into play (e.g. lack of sensitivity to radial sources in MEG or difficulty imaging

near air-tissue interfaces in fMRI). ROC-r provides an objective means of determin-

ing which areas are reliably detected, which provides guidance for recommending

scanning modalities for pre-surgical mapping.

The automated thresholding algorithm provided robust localization at the single-

subject level. The few MEG datasets in which localization was not possible had
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very low reliability even for the best available pre-processing pipelines. This is likely

a reflection on the data quality for these datasets, as the evoked responses were

weak in these cases, possibly because of the relatively low number of stimuli used

in this study. Ongoing work by many research groups improving task paradigms,

acquisition strategies, and analysis procedures will ultimately improve the quality of

activation maps, making ROC-r an even more valuable tool for pipeline optimization

and automated localization.

By providing the best data analysis chain for a given dataset, and automatically

thresholding to include only reliably detected brain areas, ROC-r allows for com-

parison of fMRI and MEG localization on equal footing. This is beneficial both for

comparing experimental techniques in healthy controls, and for optimizing results in

the clinical setting, where producing the highest quality results is most important.

6.7 Conclusion

ROC-r analysis uses quantitative reliability measures to achieve fully automated acti-

vation mapping, including pipeline optimization and image thresholding, on a single

subject basis. ROC-r provides a critical tool for non-invasive pre-surgical mapping,

as it allows for subject-specific processing strategies without the need for manual

intervention. This reduces the risk of missing important functional activity due to

sub-optimal analysis strategies, eliminates the influence of subjective decision making

in the production of activation maps, and streamlines the process for integration into

a clinical setting. We demonstrated ROC-r as a unified framework for push-button

fMRI and MEG studies, thus dramatically improving our ability to study relative dif-

ferences in pre-surgical functional neuroimaging technologies, and ensuring the best

possible pre-surgical maps are produced.



Chapter 7

Conclusions

7.1 Summary

The purpose of this thesis was to evaluate the benefit of ROC-r analysis for improving

the production of single-subject activation maps. First, it was shown in manuscript

one (ch. 3) that the reliability of single-subject maps is highly dependent on the

threshold used and on the pre-processing steps employed. This is of course a large

part of the motivation for performing individualized analysis for single-subject map-

ping. Nonetheless, it is important to demonstrate that the tool we plan to use to

address the issues of individual variability is sensitive to differences between subjects,

task repetitions, and pre-processing pipelines. ROC-r thresholding was shown to be

responsive to different levels of activation between subjects or within subjects between

runs, and the first use of ROC-r to select subject-specific pre-processing strategies was

demonstrated to improve activation reliability. The high degree of variability at the

single-subject level is inherent given the noisy nature of fMRI and MEG signals, and

cannot be ignored without jeopardizing the quality of the activation maps.

One of the greatest strengths of the ROC-r method is the minimal assumptions

placed on the underlying data distributions. The basic assumptions are simply: 1)

the image signal is higher in amplitude than the noise, and 2) that the signal is consis-

tently located in space whereas the noise is not. Additionally, the ROC-r calculation

only requires functional maps as input, and because the functional map forms the

common link between fMRI and MEG imaging, ROC-r is by nature cross-modal. It

is worth noting that it is crucial in this context that the MEG source images are

noise-normalized, as the sensor noise projects non-uniformly in space, with higher

noise projecting in areas of high sensor sensitivity (e.g. near the sensors). This would

invalidate the second assumption of the ROC-r method, and thus in this work, only

noise-normalized MEG source maps were used.

118
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In manuscript two (ch. 4), we demonstrated the ROC-r method for MEG vol-

umetric source imaging with a noise-normalized beamformer. We showed that the

ROC-r reliable fraction provided analogous quality assurance to the equivalent cur-

rent dipole goodness-of-fit used for dipole source models. Furthermore, we verified the

automated thresholding and localization of MEG signals by ROC-r by co-localization

of the beamformer peaks with the dipole locations.

The primary application of ROC-r analysis we have identified is pre-surgical map-

ping, where single-subject imaging is clearly necessary. While there are other in-

stances where single-subject imaging is important - such as the assessment of brain

injury - we used the pre-surgical mapping scenario in manuscript three (ch. 5) to

demonstrate the tangible benefits of using the ROC-r methodology. This section of

the thesis showed that reliability of patient images is generally lower than that of

healthy controls, either due to direct influence of pathology on the functional imaging

signal, or due to factors affecting patient performance of the tasks. ROC-r pre-

processing pipeline optimization was able to improve reliability of the patient data,

even using the limited number of pre-processing pipelines investigated.

Crucially, this paper showed that the ROC-r reliable fraction was correlated with

better prediction of critical eloquent cortex, and that ROC-r automated threshold-

ing was better at localizing these critical brain regions than fixed-significance levels.

While the more reliable datasets on average produced activation closer to the critical

cortical areas, it was still necessary to use moderate search ranges (10-15 mm) around

each CS location to achieve high sensitivity. This suggests that the fMRI protocols

demonstrated in this thesis are better suited to an augmentative pre-surgical map-

ping role than as a direct replacement to CS. It is likely that the motor maps would

achieve higher sensitivity at lower search ranges than the language maps, but there

was not sufficient data available to test this hypothesis quantitatively. While there is

still substantial room for improvement of the predictive power of fMRI for presurgical

mapping of language in particular, the ROC-r method helps to get the most out of

the available data.

The final manuscript (ch. 6) included in this thesis showcased the capabilities of

ROC-r analysis as a unified framework for improving the reliability of single-subject

fMRI and MEG mapping. This paper brings together the facets introduced by each
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of the preceding papers by including quality assurance, pre-processing optimization,

and automated threshold selection for functional mapping by both modalities. As this

paper shows, the use of fixed pre-processing pipelines could misleadingly conclude that

one scanner produces more reliable results than the other, whereas in reality these

data could produce reliable activation maps with the use of alternative processing

strategies. While it was true for that experiment that the fMRI results were on average

less sensitive to the pre-processing pipeline chosen, this result depends on the task

employed and participant population being investigated (e.g. patients vs controls).

ROC-r thus facilitates the comparison of fMRI and MEG results by ensuring that the

best available methods are selected for processing each dataset individually.

7.2 Future Work

Further improvements of the ROC-r algorithm will initially focus on the generation

of single-run analyses. Single-run ROC-r was demonstrated in manuscript two for

MEG datasets by generating split-half maps from half of the available epochs and

iterating over different randomized split-halves. A similar technique for single-run

ROC-r using fMRI data is being developed and will offer the enhanced pre-surgical

mapping capabilities of the ROC-r analysis, without the additional data collection

requirements of retest imaging. An additional benefit of the single-run version is the

ability to perform reliability analyses in real-time, with the potential to inform the

acquisition system when a robust activation map had been obtained. This would allow

individually tailored scan durations, thereby reducing scanning times. Ultimately,

ROC-r is intended as a clinical utility, and thus would ideally be either directly

integrated into the acquisition console, or implemented on the post-processing station,

in order to automate the processing of activation maps into a format ready for review

(e.g. by the radiologist, neuropsychologist, neurosurgeon, etc.).

For MEG, an important avenue for future research will be to compare the results

of ROC-r for beamformer mapping to imaging approaches like dSPM, sLORETA and

MNE. There are interesting questions to address in this context in terms of the re-

lationship between mapping reliability and localization accuracy. In particular, the

MNE solution is generally accepted as being quite robust, however it tends to have a
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localization bias towards superficial locations, due to the MEG sensor sensitivity pro-

file [78]. When cortical stimulation (which is generally restricted to surface mapping)

is used as the ‘gold standard’ for localization, this may result in better co-localization

for MNE solutions, even when the true sources are located deeper within the cor-

tical sulci. Additionally, there are many inverse solution constraints that were not

employed in this work, such as restriction of sources to the cortical grey matter, and

constraints on source orientation to be normal to the cortical surface. The effect of

these additional a-priori localization constraints on the reliability and accuracy of

MEG mapping should be explored in the future.

Another area of future investigation will be the use of ROC-r for functional con-

nectivity analyses and resting state functional mapping. For example, components of

interest in a decomposition-based resting state analysis (e.g. ICA) could be identified

using ROC-r by comparing them with a number of pre-defined activation templates

(e.g. derived by a group analyses of task-based mapping). The most similar ICA

component to a given functional network could be determined as the one with the

highest ROC-r FR.

Modelling of the ROC-r output also deserves further attention, as the method of

cubic spline fitting, while robust, is does not produce meaningful fitting parameters.

One option would be to use a Gompertz function (g(x)):

g(x) = a+ be−ce−dx

(7.1)

which is widely used for fitting data that has a general sigmoidal shape. The pa-

rameters of this function allow for varying the initial (a) and final (b) values, along

with the point at which the AUC begins to increase (c), and the rate of increase

(d). Alternatively, a functional form could be derived by modelling the underlying

statistical distributions, and computing a theoretical form for the true and false pos-

itive rates. In this case, the parameters governing the final result will be the mean

activation/deactivation/noise magnitudes and variances. This would have the added

advantage of being able to use the intensity distributions in the images (i.e. the im-

age histograms) to inform the curve fitting process. Either of these choices would

confer the advantage of producing curve fitting parameters that are meaningful in

terms of understanding the underlying data, or determining the image reliability and
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informing the choice of activation thresholds.

Finally, while several reference standards were used in this thesis to evaluate the

efficacy of the ROC-r approach to activation mapping (e.g. dipole fitting for MEG,

cortical stimulation as ’ground truth’, etc), it would be important moving forward

to assess patient outcomes. Patient outcomes are likely the best gold standard for

determining whether pre-surgical mapping successfully identified the key areas to

respect during surgery, as the ultimate test of whether these functions were spared

or not.

7.3 Conclusion

Overall, this thesis has demonstrated the utility of ROC-r analysis for reliable single-

subject functional mapping. The ROC-r method addresses the issue of individual

variability by producing a flexible solution to the selection of both individualized

pre-processing pipelines and activation thresholds. ROC-r also eliminates inter-rated

variability, as the production of activation maps is a fully automated process. The

production of robust, push-button single-subject mapping is a vital step forward for

fMRI and MEG, especially in the context of pre-surgical mapping.



References

[1] Perry Black. Management of malignant glioma: role of surgery in relation to
multimodality therapy. Journal of NeuroVirology, 4:227–236, 1998.

[2] Ashok R. Asthagiri, Nader Pouratian, Jonathan Sherman, Galal Ahmed, and
Mark E. Shaffrey. Advances in brain tumor surgery. Neurologic Clinics,
25(4):975–1003, 2007-11.

[3] Nader Sanai and Mitchel S. Berger. Recent surgical management of gliomas.
In Glioma, pages 12–25. Springer, 2012.

[4] Ilker Y. Eypoglu, Michael Buchfelder, and Nic E. Savaskan. Surgical resec-
tion of malignant gliomasrole in optimizing patient outcome. Nature Reviews
Neurology, 9(3):141–151, 2013-01-29.

[5] Ashok R. Asthagiri, Gregory A. Helm, and Jason P. Sheehan. Current con-
cepts in management of meningiomas and schwannomas. Neurologic Clinics,
25(4):1209–1230, 2007-11.

[6] Hugues Duffau and Laurent Capelle. Preferential brain locations of low-grade
gliomas: Comparison with glioblastomas and review of hypothesis. Cancer,
100(12):2622–2626, 2004-06-15.

[7] Wilder Penfield and Edwin Boldrey. Somatic motor and sensory representation
in the cerebral cortex of man as studied by electrical stimulation. Original
Articles and Clinical Cases, pages 389–444, 1937.

[8] Wilder Penfield. Some observations on the functional organization of the human
brain. Proceedings of the American Philosophical Society, pages 293–297, 1954.

[9] Wilder Penfield and Phanor Perot. The brains record of auditory and visual
experience a final summary and discussion. Brain, 86(4):595–696, 1963.

[10] R. Andrew Danks, Linda S. Aglio, Lavern D. Gugino, and Peter McL Black.
Craniotomy under local anesthesia and monitored conscious sedation for the re-
section of tumors involving eloquent cortex. Journal of neuro-oncology, 49:131–
139, 2000.

[11] Nader Sanai, Zaman Mirzadeh, and Mitchel S. Berger. Functional outcome
after language mapping for glioma resection. New England Journal of Medicine,
358(1):18–27, 2008.

[12] H. Duffau. Contribution of cortical and subcortical electrostimulation in brain
glioma surgery: Methodological and functional considerations. Neurophysiologie
Clinique/Clinical Neurophysiology, 37(6):373–382, 2007-12.

123



124

[13] Svenja Borchers, Marc Himmelbach, Nikos Logothetis, and Hans-Otto Karnath.
Direct electrical stimulation of human cortexthe gold standard for mapping
brain functions? Nature Reviews Neuroscience, 13(1):63–70, 2011.

[14] Alfredo Quiones-Hinojosa, Steven G. Ojemann, Nader Sanai, William P. Dil-
lon, and Mitchel S. Berger. Preoperative correlation of intraoperative cortical
mapping with magnetic resonance imaging landmarks to predict localization of
the broca area. Journal of neurosurgery, 99(2):311–318, 2003.

[15] S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Eller-
mann, and K. Ugurbil. Functional brain mapping by blood oxygenation level-
dependent contrast magnetic resonance imaging. a comparison of signal char-
acteristics with a biophysical model. Biophysical journal, 64(3):803–812, 1993.

[16] Suzanne Tharin and Alexandra Golby. Functional brain mapping and its ap-
plications to neurosurgery. Neurosurgery, 60(4):185–202, 2007.

[17] A I Ahonen, M S Hmlinen, M J Kajola, J E T Knuutila, P P Laine, O V
Lounasmaa, L T Parkkonen, J T Simola, and C D Tesche. 122-channel squid
instrument for investigating the magnetic signals from the human brain. Physica
Scripta, 1993(T49A):198, 1993.

[18] W. W. Sutherling, P. H. Crandall, T. M. Darcey, D. P. Becker, M. F. Levesque,
and D. S. Barth. The magnetic and electric fields agree with intracranial local-
izations of somatosensory cortex. Neurology, 38(11):1705–1705, 1988.

[19] T.P.L. Roberts, E. Zusman, M. McDermott, N. Barbaro, and H.A. Rowley.
Correlation of functional magnetic source imaging with intraoperative corti-
cal stimulation in neurosurgical patients. Journal of Image Guided Surgery,
1(6):339–347, 1995.

[20] Christopher C. Gallen, David Sobel, Thomas Waltz, Maung Aung, Brian
Copeland, Barry Schwartz, Eugene Hirschkoff, and Floyd Bloom. Noninvasive
presurgical neuromagnetic mapping of somatosensory cortex. Neurosurgery,
33(2):260–268, 1993.

[21] Oliver Ganslandt, Ralf Steinmeier, Helmut Kober, Jurgen Vieth, Jan Kassubek,
Johann Romstock, Christian Straus, and Rudolph Fahlbusch. Magnetic source
imaging combined with image-guided frameless stereotaxy: A new method in
surgery around the motor strip. Neurosurgery, 41(3):621–628, 1995.

[22] Christopher C. Gallen, Barry J. Schwartz, Richard D. Bucholz, Ghaus Malik,
Gregory L. Barkley, Joseph Smith, Howard Tung, Brian Copeland, Leonard
Bruno, Sam Assam, and others. Presurgical localization of functional cortex
using magnetic source imaging. Journal of neurosurgery, 82(6):988–994, 1995.



125

[23] Takashi Inoue, Hiroaki Shimizu, Nobukazu Nakasato, Toshihiro Kumabe, and
Takashi Yoshimoto. Accuracy and limitation of functional magnetic resonance
imaging for identification of the central sulcus: comparison with magnetoen-
cephalography in patients with brain tumors. Neuroimage, 10(6):738–748, 1999.

[24] Oliver Ganslandt, Rudolf Fahlbusch, Christopher Nimsky, Helmut Kober, Mar-
tin Mller, Ralf Steinmeier, Johann Romstck, and Jrgen Vieth. Functional
neuronavigation with magnetoencephalography: outcome in 50 patients with
lesions around the motor cortex. Journal of neurosurgery, 91(1):73–79, 1999.

[25] Timothy PL Roberts, Paul Ferrari, David Perry, Howard A. Rowley, and
Mitchel S. Berger. Presurgical mapping with magnetic source imaging: compar-
isons with intraoperative findings. Brain tumor pathology, 17(2):57–64, 2000.

[26] R. Firsching, I. Bondar, H.-J. Heinze, H. Hinrichs, T. Hagner, J. Heinrich, and
A. Belau. Practicability of magnetoencephalography-guided neuronavigation.
Neurosurgical Review, 25(1):73–78, 2002-03.

[27] Hagen Schiffbauer, Mitchel S. Berger, Paul Ferrari, Dirk Freudenstein,
Howard A. Rowley, and Timothy PL Roberts. Preoperative magnetic source
imaging for brain tumor surgery: a quantitative comparison with intraoperative
sensory and motor mapping. Journal of neurosurgery, 97(6):1333–1342, 2002.

[28] Eduardo M Castillo, Panagiotis G Simos, James W Wheless, James E Baum-
gartner, Joshua I Breier, Rebecca L Billingsley, Shirin Sarkari, Michele E
Fitzgerald, and Andrew C Papanicolaou. Integrating sensory and motor map-
ping in a comprehensive MEG protocol: Clinical validity and replicability. Neu-
roImage, 21(3):973–983, 2004-03.

[29] Antti Korvenoja, Erika Kirveskari, Hannu J. Aronen, Sari Avikainen, Antti
Brander, Juha Huttunen, Risto J. Ilmoniemi, Juha E. Jaaskelainen, Tero Ko-
vala, Jyrki P. Makela, and others. Sensorimotor cortex localization: Compar-
ison of magnetoencephalography, functional MR imaging, and intraoperative
cortical mapping 1. Radiology, 241(1):213–222, 2006.

[30] Elizabeth W. Pang, James M. Drake, Hiroshi Otsubo, Allison Martineau,
Samuel Strantzas, Douglas Cheyne, and William Gaetz. Intraoperative con-
firmation of hand motor area identified preoperatively by magnetoencephalog-
raphy. Pediatric Neurosurgery, 44(4):313–317, 2008.

[31] Srikantan Nagarajan, Heidi Kirsch, Peter Lin, Anne Findlay, Susanne Honma,
and Mitchel S. Berger. Preoperative localization of hand motor cortex by adap-
tive spatial filtering of magnetoencephalography data. 2008.



126

[32] William Gaetz, Douglas Cheyne, James T. Rutka, James Drake, Mony Benifla,
Samuel Strantzas, Elysa Widjaja, Stephanie Holowka, Zulma Tovar-Spinoza,
Hiroshi Otsubo, and Elizabeth W. Pang. Presurgical localization of primary
motor cortex in pediatric patients with brain lesions by the use of spatially
filtered magnetoencephalography. Neurosurgery, 64:ons177–ons186, 2009-03.

[33] Phiroz E. Tarapore, Matthew C. Tate, Anne M. Findlay, Susanne M. Honma,
Danielle Mizuiri, Mitchel S. Berger, and Srikantan S. Nagarajan. Preoper-
ative multimodal motor mapping: a comparison of magnetoencephalography
imaging, navigated transcranial magnetic stimulation, and direct cortical stim-
ulation: Clinical article. Journal of neurosurgery, 117(2):354–362, 2012.

[34] Panagiotis G Simos, Joshua I Breier, William W. Maggio, William B. Gormley,
George Zouridakis, L. James Willmore, James W Wheless, Jules EC Constanti-
nou, and Andrew C Papanicolaou. Atypical temporal lobe language representa-
tion: MEG and intraoperative stimulation mapping correlation. NeuroReport,
10:139–142, 1999.

[35] Eduardo M Castillo, Panagiotis G Simos, Vijay Venkataraman, Joshua I Breier,
James W Wheless, and Andrew C Papanicolaou. Mapping of expressive lan-
guage cortex using magnetic source imaging. Neurocase, 7:419–422, 2001.

[36] Clifford R. Jack Jr, Richard M. Thompson, R. Kim Butts, Frank W. Shar-
brough, Patrick J. Kelly, Dennis P. Hanson, Stephen J. Riederer, Richard L.
Ehman, Nicholas J. Hangiandreou, and Gregory D. Cascino. Sensory motor
cortex: correlation of presurgical mapping with functional MR imaging and
invasive cortical mapping. Radiology, 190(1):85–92, 1994.

[37] F. Zerrin Yetkin, Wade M. Mueller, George L. Morris, Timothy L. McAuliffe,
John L. Ulmer, Robert W. Cox, David L. Daniels, and Victor M. Haughton.
Functional MR activation correlated with intraoperative cortical mapping.
American Journal of Neuroradiology, 18(7):1311–1315, 1997.

[38] Javier Fandino, Spyros S. Kollias, Heinz G. Wieser, Anton Valavanis, and Ya-
suhiro Yonekawa. Intraoperative validation of functional magnetic resonance
imaging and cortical reorganization patterns in patients with brain tumors in-
volving the primary motor cortex. Journal of neurosurgery, 91(2):238–250,
1999.

[39] R. Beisteiner, R. Lanzenberger, K. Novak, V. Edward, C. Windischberger,
M. Erdler, R. Cunnington, A. Gartus, B. Streibl, E. Moser, and others. Im-
provement of presurgical patient evaluation by generation of functional mag-
netic resonance risk maps. Neuroscience letters, 290(1):13–16, 2000.



127

[40] Stphane Lehricy, Hugues Duffau, Philippe Cornu, Laurent Capelle, Bernard
Pidoux, Alexandre Carpentier, Stphanie Auliac, Stphane Clemenceau, Jean-
Pierre Sichez, Ahmed Bitar, and others. Correspondence between functional
magnetic resonance imaging somatotopy and individual brain anatomy of the
central region: comparison with intraoperative stimulation in patients with
brain tumors. Journal of neurosurgery, 92(4):589–598, 2000.

[41] F. E. Roux, K. Boulanouar, D. Ibarrola, M. Tremoulet, F. Chollet, and I. Berry.
Functional MRI and intraoperative brain mapping to evaluate brain plasticity
in patients with brain tumours and hemiparesis. Journal of Neurology, Neuro-
surgery & Psychiatry, 69(4):453–463, 2000.

[42] Reinhard J. Tomczak, Arthur P. Wunderlich, Yang Wang, Veit Braun, Gre-
gor Antoniadis, Johannes Grich, Hans-Peter Richter, and Hans-Jrgen Brambs.
fMRI for preoperative neurosurgical mapping of motor cortex and language in a
clinical setting. Journal of computer assisted tomography, 24(6):927–934, 2000.

[43] Franck-Emmanuel Roux, Danielle Ibarrola, Michel Tremoulet, Yves Lazorthes,
Patrice Henry, Jean-Christophe Sol, and Isabelle Berry. Methodological and
technical issues for integrating functional magnetic resonance imaging data in
a neuronavigational system. Neurosurgery, 49(5):1145–1157, 2001.

[44] Chikashi Fukaya, Yoichi Katayama, Yoshihiro Murata, Kazutaka Kobayashi,
Masahiko Kasai, Takamitsu Yamamoto, and Kaoru Sakatani. Localization of
eloquent area utilize to functional MRI in patients with brain tumor. In Inter-
national Congress Series, volume 1232, pages 763–767. Elsevier, 2002.

[45] Robert Barto, R. Jech, J. Vymazal, P. Petrovicky, P. Vachata, A. Hejcl, A. Zo-
lal, and M. Sames. Validity of primary motor area localization with fMRI
versus electric cortical stimulation: A comparitive study. Acta Neurochirurgica,
151:1071–1080, 2009.

[46] Martina Wengenroth, M. Blatow, J. Guenther, M. Akbar, V.M. Tronnier, and
C. Stippich. Diagnostic benefits of presurgical fMRI in patients with brain
tumours in the primary sensorimotor cortex. European radiology, 21:1517–1525,
2011.

[47] David B. FitzGerald, G. Rees Cosgrove, Steven Ronner, Hong Jiang, Brad R.
Buchbinder, John W. Belliveau, Bruce R. Rosen, and Randall R. Benson.
Location of language in the cortex: a comparison between functional MR
imaging and electrocortical stimulation. American Journal of Neuroradiology,
18(8):1529–1539, 1997.

[48] Joseph Lurito, Mark Lowe, Carl Sartorius, and Mathews Vincent. Comparison
of fmri and intraoperative direct cortical stimulation in localization of receptive
language areas. Journal of Computer Assisted Tomography, 24(1):99–105, 2000.



128

[49] Nader Pouratian, Susan Y. Bookheimer, David E. Rex, Neil A. Martin, and
Arthur W. Toga. Utility of preoperative functional magnetic resonance imag-
ing for identifying language cortices in patients with vascular malformations.
Journal of neurosurgery, 97(1):21–32, 2002.

[50] G. J. M. Rutten, N. F. Ramsey, P. C. Van Rijen, H. J. Noordmans, and C. W. M.
Van Veelen. Development of a functional magnetic resonance imaging protocol
for intraoperative localization of critical temporoparietal language areas. Annals
of neurology, 51(3):350–360, 2002.

[51] Franck-Emmanuel Roux, Kader Boulanouar, Jean-Albert Lotterie, Mehdi Mej-
doubi, James P. LeSage, and Isabelle Berry. Language functional magnetic
resonance imaging in preoperative assessment of language areas: correlation
with direct cortical stimulation. Neurosurgery, 52(6):1335–1347, 2003.

[52] S. Larsen, R. Kikinis, I.-F. Talos, D. Weinstein, W. Wells, and A. Golby. Quan-
titative comparison of functional MRI and direct electrocortical stimulation for
functional mapping. The international journal of medical robotics and computer
assisted surgery, 3(3):262–270, 2007.

[53] Nicole M. Petrovich Brennan, Stephen Whalen, Daniel de Morales Branco,
James P. O’Shea, Isaiah H. Norton, and Alexandra J. Golby. Object nam-
ing is a more sensitive measure of speech localization than number counting:
converging evidence from direct cortical stimulation and fMRI. Neuroimage,
37:S100–S108, 2007.

[54] Alberto Bizzi, Valeria Blasi, Andrea Falini, Paolo Ferroli, Marcello Cadioli, Ugo
Danesi, Domenico Aquino, Carlo Marras, Dario Caldiroli, and Giovanni Broggi.
Presurgical functional MR imaging of language and motor functions: Validation
with intraoperative electrocortical mapping 1. Radiology, 248(2):579–589, 2008.

[55] Warren Boling, Michael Parsons, Michal Kraszpulski, Carrie Cantrell, and Aina
Puce. Whole-hand sensorimotor area: cortical stimulation localization and cor-
relation with functional magnetic resonance imaging. Journal of Neurosurgery,
2008.

[56] Bob L. Hou, Michelle Bradbury, Kyung K. Peck, Nicole M. Petrovich, Philip H.
Gutin, and Andrei I. Holodny. Effect of brain tumor neovasculature defined by
rCBV on BOLD fMRI activation volume in the primary motor cortex. Neu-
roImage, 32(2):489–497, 2006-08.

[57] Carlo Giussani, Frank-Emmanuel Roux, Jeffrey Ojemann, Erik Pietro Sganz-
erla, David Pirillo, and Costanza Papagno. Is preoperative functional magnetic
resonance imaging reliable for language areas mapping in brain tumor surgery?
review of language functional magnetic resonance imaging and direct cortical
stimulation correlation studies. Neurosurgery, 66(1):113–120, 2010.



129

[58] Nathan W. Churchill, Anita Oder, Herv Abdi, Fred Tam, Wayne Lee, Christo-
pher Thomas, Jon E. Ween, Simon J. Graham, and Stephen C. Strother. Opti-
mizing preprocessing and analysis pipelines for single-subject fMRI. i. standard
temporal motion and physiological noise correction methods. Human Brain
Mapping, 33(3):609–627, 2012-03.

[59] Nathan W. Churchill, Grigori Yourganov, Anita Oder, Fred Tam, Simon J. Gra-
ham, and Stephen C. Strother. Optimizing preprocessing and analysis pipelines
for single-subject fMRI: 2. interactions with ICA, PCA, task contrast and inter-
subject heterogeneity. PLoS ONE, 7(2):e31147, 2012-02-27.

[60] J.W. Evans, R.M. Todd, M.J. Taylor, and S.C. Strother. Group specific op-
timisation of fMRI processing steps for child and adult data. NeuroImage,
50(2):479–490, 2010-04.

[61] Jing Zhang, Jon R. Anderson, Lichen Liang, Sujit K. Pulapura, Lael Gatewood,
David A. Rottenberg, and Stephen C. Strother. Evaluation and optimization of
fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magnetic resonance imaging, 27(2):264–278, 2009.

[62] Giulia Barbati, Camillo Porcaro, Filippo Zappasodi, Paolo Maria Rossini, and
Franca Tecchio. Optimization of an independent component analysis approach
for artifact identification and removal in magnetoencephalographic signals.
Clinical Neurophysiology, 115(5):1220–1232, 2004-05.

[63] D. Mantini, R. Franciotti, G.L. Romani, and V. Pizzella. Improving MEG
source localizations: An automated method for complete artifact removal based
on independent component analysis. NeuroImage, 40(1):160–173, 2008-03-01.

[64] Karl J. Friston, Andrew Holmes, Jean-Baptiste Poline, Cathy J. Price, and
Christopher D. Frith. Detecting activations in PET and fMRI: levels of inference
and power. Neuroimage, 4(3):223–235, 1996.

[65] Christopher R. Genovese, Nicole A. Lazar, and Thomas Nichols. Thresholding
of statistical maps in functional neuroimaging using the false discovery rate.
NeuroImage, 15(4):870–878, 2002-04.

[66] Thomas Nichols and Satoru Hayasaka. Controlling the familywise error rate in
functional neuroimaging: a comparative review. Statistical Methods in Medical
Research, 12(5):419–446, 2003-10-01.

[67] Brent R. Logan and Daniel B. Rowe. An evaluation of thresholding techniques
in fMRI analysis. NeuroImage, 22(1):95–108, 2004-05.

[68] David G. Norris. Principles of magnetic resonance assessment of brain function.
Journal of Magnetic Resonance Imaging, 23(6):794–807, 2006-06.



130

[69] Nikos K. Logothetis. The underpinnings of the BOLD functional magnetic
resonance imaging signal. The Journal of Neuroscience, 23(10):3963–3971, 2003.

[70] M. Hamalainen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. Lounasmaa. Mag-
netoencephalography - theory, instrumentation, and applications to noninvasive
studies of the working human brain. Review of Modern Physics, 65(2):413–505,
1993.

[71] R.N. Henson, J. Mattout, C. Phillips, and K.J. Friston. Selecting forward
models for MEG source-reconstruction using model-evidence. 46(1):168–176.

[72] Olaf Steinstrter, Stephanie Sillekens, Markus Junghoefer, Martin Burger, and
Carsten H. Wolters. Sensitivity of beamformer source analysis to deficiencies in
forward modeling. 31(12):1907–1927.

[73] Barry D. Van Veen, Wim Van Drongelen, Moshe Yuchtman, and Akifumi
Suzuki. Localization of brain electrical activity via linearly constrained mini-
mum variance spatial filtering. Biomedical Engineering, IEEE Transactions on,
44(9):867–880, 1997.

[74] Olaf Hauk. Keep it simple: a case for using classical minimum norm estimation
in the analysis of EEG and MEG data. 21(4):1612–1621.

[75] K. Uutela, M. Hamalainen, and E. Somersalo. Visualization of magnetoen-
cephalographic data using minimum current estimates. 10:173–180.

[76] Anders M. Dale, Arthur K. Liu, Bruce R. Fischl, Randy L. Buckner, John W.
Belliveau, Jeffrey D. Lewine, and Eric Halgren. Dynamic statistical parametric
mapping: combining fMRI and MEG for high-resolution imaging of cortical
activity. 26(1):55–67.

[77] Sarang S. Dalal, Johanna M. Zumer, Adrian G. Guggisberg, Michael Trumpis,
Daniel D. E. Wong, Kensuke Sekihara, and Srikantan S. Nagarajan. MEG/EEG
source reconstruction, statistical evaluation, and visualization with NUTMEG.
2011:1–17.

[78] Fa-Hsuan Lin, Thomas Witzel, Seppo P. Ahlfors, Steven M. Stufflebeam,
John W. Belliveau, and Matti S. Hmlinen. Assessing and improving the spa-
tial accuracy in MEG source localization by depth-weighted minimum-norm
estimates. 31(1):160–171.

[79] Yoav Benjamini and Yosef Hochberg. On the adaptive control of the false
discovery rate in multiple testing with independent statistics. 25(1):60.

[80] Krzysztof J. Gorgolewski, Amos J. Storkey, Mark E. Bastin, and Cyril R. Per-
net. Adaptive thresholding for reliable topological inference in single subject
fMRI analysis. Frontiers in Human Neuroscience, 6, 2012.



131

[81] Dimitrios Pantazis, Thomas E. Nichols, Sylvain Baillet, and Richard M. Leahy.
Spatiotemporal localization of significant activation in MEG using permutation
tests. In Information Processing in Medical Imaging, pages 512–523. Springer,
2003.

[82] Garreth Prendergast, Sam R. Johnson, Mark Hymers, Will Woods, and
Gary G.R. Green. Non-parametric statistical thresholding of baseline free MEG
beamformer images. NeuroImage, 54(2):906–918, 2011-01.

[83] Douglas C. Noll, Christopher R. Genovese, Leigh E. Nystrom, Alberto L.
Vazquez, Steven D. Forman, William F. Eddy, and Jonathan D. Cohen. Esti-
mating test-retest reliability in functional MR imaging II: Application to motor
and cognitive activation studies. Magnetic Resonance in Medicine, 38(3):508–
517, 1997.

[84] Pawel Skudlarski, R. Todd Constable, and John C. Gore. ROC analysis of
statistical methods used in functional MRI: individual subjects. Neuroimage,
9(3):311–329, 1999.

[85] T.H. Le and X. Hu. Methods for assessing accuracy and reliability in functional
MRI. NMR in Biomedicine, 10(160), 1997.

[86] Karl J. Friston, Andrew P. Holmes, Keith J. Worsley, J.-P. Poline, Chris D.
Frith, and Richard SJ Frackowiak. Statistical parametric maps in functional
imaging: a general linear approach. Human brain mapping, 2(4):189–210, 1994.

[87] S. Suresh Anand and Vitali Zagorodnov. Retrospective cluster size threshold-
ing for MRF-based detection of activated regions in fMRI. In Biomedical and
Pharmaceutical Engineering, 2006. ICBPE 2006. International Conference on,
pages 44–47. IEEE, 2006.

[88] Christopher R. Genovese, Douglas C. Noll, and William F. Eddy. Estimat-
ing test-retest reliability in functional MR imaging i: Statistical methodology.
Magnetic Resonance in Medicine, 38(3):497–507, 1997.

[89] Serge ARB Rombouts, Frederik Barkhof, Frank GC Hoogenraad, Michiel
Sprenger, and Philip Scheltens. Within-subject reproducibility of visual ac-
tivation patterns with functional magnetic resonance imaging using multislice
echo planar imaging. Magnetic resonance imaging, 16(2):105–113, 1998.

[90] Keith J. Duncan, Chotiga Pattamadilok, Iris Knierim, and Joseph T. Devlin.
Consistency and variability in functional localisers. Neuroimage, 46(4):1018–
1026, 2009.

[91] Michelle Liou, Hong-Ren Su, Alexander N. Savostyanov, Juin-Der Lee, John AD
Aston, Cheng-Hung Chuang, and Philip E. Cheng. Beyond p-values: Averaged
and reproducible evidence in fMRI experiments. Psychophysiology, 46(2):367–
378, 2009.



132

[92] Craig M. Bennett and Michael B. Miller. Issue: The year in cognitive neuro-
science. The Year in Cognitive Neuroscience, 1124:133, 2010.

[93] Gordon E. Sarty and Ron Borowsky. Functional MRI activation maps from
empirically defined curve fitting. Concepts in Magnetic Resonance Part B:
Magnetic Resonance Engineering, 24B(1):46–55, 2005-02.

[94] Stephen C. Strother, N. Lange, J. R. Anderson, K. A. Schaper, K. Rehm,
Lars Kai Hansen, and D. A. Rottenberg. Activation pattern reproducibility:
Measuring the effects of group size and data analysis models. Human brain
mapping, 5(4):312–316, 1997.

[95] Carola Tegeler, Stephen C. Strother, Jon R. Anderson, and Seong-Gi Kim.
Reproducibility of BOLD-based functional MRI obtained at 4 t. Human Brain
Mapping, 7(4):267–283, 1999.

[96] G. Fernandez, K. Specht, S. Weis, I. Tendolkar, M. Reuber, J. Fell, P. Klaver,
J. Ruhlmann, J. Reul, and C. E. Elger. Intrasubject reproducibility of presurgi-
cal language lateralization and mapping using fMRI. Neurology, 60(6):969–975,
2003.

[97] Karsten Specht, Klaus Willmes, N. Jon Shah, and Lutz Jncke. Assessment
of reliability in functional imaging studies. Journal of Magnetic Resonance
Imaging, 17(4):463–471, 2003.

[98] M. Raemaekers, M. Vink, B. Zandbelt, R. J. A. Van Wezel, R. S. Kahn, and
N. F. Ramsey. Testretest reliability of fMRI activation during prosaccades and
antisaccades. Neuroimage, 36(3):532–542, 2007.

[99] Teresa Jacobson Kimberley, Gauri Khandekar, and Michael Borich. fMRI re-
liability in subjects with stroke. Experimental brain research, 186(1):183–190,
2008.

[100] Teresa Jacobson Kimberley, Dana D. Birkholz, Renee A. Hancock, Sarah M.
VonBank, and Teresa N. Werth. Reliability of fMRI during a continuous motor
task: assessment of analysis techniques. Journal of Neuroimaging, 18(1):18–27,
2008.

[101] Alejandro Caceres, Deanna L. Hall, Fernando O. Zelaya, Steven CR Williams,
and Mitul A. Mehta. Measuring fMRI reliability with the intra-class correlation
coefficient. Neuroimage, 45(3):758–768, 2009.

[102] Michael M. Plichta, Adam J. Schwarz, Oliver Grimm, Katrin Morgen, Daniela
Mier, Leila Haddad, Antje Gerdes, Carina Sauer, Heike Tost, Christine
Esslinger, and others. Testretest reliability of evoked BOLD signals from a
cognitiveemotive fMRI test battery. Neuroimage, 60(3):1746–1758, 2012.



133

[103] S. A. Rombouts, Frederik Barkhof, F. G. Hoogenraad, Michiel Sprenger, Jaap
Valk, and Philip Scheltens. Test-retest analysis with functional MR of the
activated area in the human visual cortex. American journal of neuroradiology,
18(7):1317–1322, 1997.

[104] E. Elinor Chen and Steven L. Small. Testretest reliability in fMRI of language:
group and task effects. Brain and language, 102(2):176–185, 2007.

[105] Joseph A. Maldjian, Paul J. Laurienti, Lance Driskill, and Jonathan H. Bur-
dette. Multiple reproducibility indices for evaluation of cognitive functional
MR imaging paradigms. American journal of neuroradiology, 23(6):1030–1037,
2002.

[106] Greg S. Harrington, Sarah Tomaszewski Farias, Michael H. Buonocore, and An-
drew P. Yonelinas. The intersubject and intrasubject reproducibility of FMRI
activation during three encoding tasks: implications for clinical applications.
Neuroradiology, 48(7):495–505, 2006.

[107] Peter Mannfolk, Markus Nilsson, Henrik Hansson, Freddy Stahlberg, Peter
Fransson, Andreas Weibull, Jonas Svensson, Ronnie Wirestam, and Johan Ol-
srud. Can resting-state functional MRI serve as a complement to task-based
mapping of sensorimotor function? a test-retest reliability study in healthy
volunteers. Journal of Magnetic Resonance Imaging, 34:511–517, 2011.

[108] Ranjan Maitra, Steven R. Roys, and Rao P. Gullapalli. Test-retest reliability
estimation of functional MRI data. Magnetic Resonance in Medicine, 48(1):62–
70, 2002.

[109] John H. Brannen, Behnam Badie, Chad H. Moritz, Michelle Quigley, M. Eliza-
beth Meyerand, and Victor M. Haughton. Reliability of functional MR imaging
with word-generation tasks for mapping broca’s area. American Journal of
Neuroradiology, 22(9):1711–1718, 2001.

[110] Rose Bosnell, C. Wegner, Z. T. Kincses, T. Korteweg, F. Agosta, Olga Cic-
carelli, Nicola De Stefano, A. Gass, J. Hirsch, Heidi Johansen-Berg, and others.
Reproducibility of fMRI in the clinical setting: implications for trial designs.
Neuroimage, 42(2):603–610, 2008.

[111] G. Fesl, B. Braun, S. Rau, M. Wiesmann, M. Ruge, P. Bruhns, J. Linn,
T. Stephan, J. Ilmberger, J.-C. Tonn, and others. Is the center of mass (COM)
a reliable parameter for the localization of brain function in fMRI? European
radiology, 18(5):1031–1037, 2008.



134

[112] Viktoria-Eleni Gountouna, Dominic E. Job, AndrewM. McIntosh, T. William J.
Moorhead, G. Katherine L. Lymer, Heather C. Whalley, Jeremy Hall, Gor-
don D. Waiter, David Brennan, David J. McGonigle, and others. Func-
tional magnetic resonance imaging (fMRI) reproducibility and variance compo-
nents across visits and scanning sites with a finger tapping task. Neuroimage,
49(1):552–560, 2010.

[113] Ranjan Maitra. A re-defined and generalized percent-overlap-of-activation mea-
sure for studies of fMRI reproducibility and its use in identifying outlier acti-
vation maps. NeuroImage, 50:124–135, 2010.

[114] Javier Gonzalez-Castillo and Thomas M. Talavage. Reproducibility of fMRI
activations associated with auditory sentence comprehension. Neuroimage,
54(3):2138–2155, 2011.

[115] Rao P. Gullapalli, Ranjan Maitra, Steve Roys, Gerald Smith, Gad Alon, and
Joel Greenspan. Reliability estimation of grouped functional imaging data using
penalized maximum likelihood. Magnetic resonance in medicine, 53(5):1126–
1134, 2005.

[116] P Jaccard. Etude comparative de la distribution florale dans une portion des
alpes et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles, 37:547–
579, 1901.

[117] Ranjan Maitra. Assessing certainty of activation or inactivation in testretest
fMRI studies. Neuroimage, 47(1):88–97, 2009.

[118] R.C. Oldfield. The assessment and analysis of handedness: The edinburgh
inventory. Neuropsychologia, 9:97–113, 1971.

[119] Robert W. Cox. AFNI: software for analysis and visualization of functional mag-
netic resonance neuroimages. Computers and Biomedical research, 29(3):162–
173, 1996.

[120] Bertrand Thirion, Philippe Pinel, Sbastien Mriaux, Alexis Roche, Stanislas
Dehaene, and Jean-Baptiste Poline. Analysis of a large fMRI cohort: Statistical
and methodological issues for group analyses. Neuroimage, 35(1):105–120, 2007.

[121] Mohamed L. Seghier, Franois Lazeyras, Alan J. Pegna, Jean-Marie Annoni, Ivan
Zimine, Eugne Mayer, Christoph M. Michel, and Asaid Khateb. Variability of
fMRI activation during a phonological and semantic language task in healthy
subjects. Human Brain Mapping, 23(3):140–155, 2004-11.

[122] Ryan CN D’arcy, Timothy Bardouille, Aaron J. Newman, Sean R. McWhinney,
Drew DeBay, R. Mark Sadler, David B. Clarke, and Michael J. Esser. Spatial
MEG laterality maps for language: Clinical applications in epilepsy. Human
brain mapping, 34(8):1749–1760, 2013.



135

[123] I.M. Ruff, N.M. Petrovich Brennan, K.K. Peck, B.L. Hou, V. Tabar, C.W. Bren-
nan, and A.I. Holodny. Assessment of the language laterality index in patients
with brain tumor using functional MR imaging: Effects of thresholding, task se-
lection, and prior surgery. American Journal of Neuroradiology, 29(3):528–535,
2008-03-01.

[124] David F. Abbott, Anthony B. Waites, Leasha M. Lillywhite, and Graeme D.
Jackson. fMRI assessment of language lateralization: An objective approach.
NeuroImage, 50(4):1446–1455, 2010-05.

[125] Kayako Matsuo, Shen-Hsing Annabel Chen, and Wen-Yih Isaac Tseng. AveLI:
A robust lateralization index in functional magnetic resonance imaging us-
ing unbiased threshold-free computation. Journal of Neuroscience Methods,
205(1):119–129, 2012-03.

[126] Maria Strandberg, Christina Elfgren, Peter Mannfolk, Johan Olsrud, Lars Sten-
berg, Danielle van Westen, Elna-Marie Larsson, Ia Rorsman, and Kristina Klln.
fMRI memory assessment in healthy subjects: a new approach to view later-
alization data at an individual level. Brain Imaging and Behavior, 5(1):1–11,
2011-03.

[127] Babak Afshin-Pour, Gholam-Ali Hossein-Zadeh, Stephen C. Strother, and
Hamid Soltanian-Zadeh. Enhancing reproducibility of fMRI statistical maps
using generalized canonical correlation analysis in NPAIRS framework. Neu-
roImage, 60(4):1970–1981, 2012-05.

[128] Isabelle Loubinoux, Christophe Carel, Flamine Alary, Kader Boulanouar, Grard
Viallard, Claude Manelfe, Olivier Rascol, Pierre Celsis, and Franois Chollet.
Within-session and between-session reproducibility of cerebral sensorimotor ac-
tivation: A test-retest effect evidenced with functional magnetic resonance im-
age. Journal of Cerebral Blood Flow & Metabolism, 21:592–607, 2001.

[129] Steven E. Petersen, Hanneke Van Mier, Julie A. Fiez, and Marcus E. Raichle.
The effects of practice on the functional anatomy of task performance. Proceed-
ings of the National Academy of Sciences, 95(3):853–860, 1998.

[130] Hubertus Lohmann, Michael Deppe, Andreas Jansen, Wolfram Schwindt, and
Stefan Knecht. Task repetition can affect functional magnetic resonance
imaging-based measures of language lateralization and lead to pseudoincreases
in bilaterality. Journal of Cerebral Blood Flow & Metabolism, 24(2):179–187,
2004.

[131] Michelle Liou, Hong-Ren Su, Juin-Der Lee, Philip E. Cheng, Chien-Chih Huang,
and Chih-Hsin Tsai. Bridging functional MR images and scientific inference:
reproducibility maps. Journal of Cognitive Neuroscience, 15(7):935–945, 2003.



136

[132] Michelle Liou, Hong-Ren Su, Juin-Der Lee, John AD Aston, Arthur C. Tsai,
and Philip E. Cheng. A method for generating reproducible evidence in fMRI
studies. NeuroImage, 29(2):383–395, 2006.

[133] Juha Huttunen, Soile Komssi, and Leena Lauronen. Spatial dynamics of pop-
ulation activities at s1 after median and ulnar nerve stimulation revisited: An
MEG study. NeuroImage, 32(3):1024–1031, 2006-09.

[134] M. Oishi, M. Fukuda, S. Kameyama, T. Kawaguchi, H. Masuda, and R. Tanaka.
Magnetoencephalographic representation of the sensorimotor hand area in cases
of intracerebral tumour. Journal of Neurology, Neurosurgery & Psychiatry,
74(12):1649–1654, 2003.

[135] Yung-Yang Lin, Wei-Ta Chen, Kwong-Kum Liao, Tzu-Chen Yeh, Zin-An Wu,
Low-Tone Ho, and Liang-Shong Lee. Differential generators for n20m and p35m
responses to median nerve stimulation. NeuroImage, 25(4):1090–1099, 2005-05.

[136] Ajay Niranjan, Erika J.C. Laing, Fahad J. Laghari, R. Mark Richardson, and
L. Dade Lunsford. Preoperative magnetoencephalographic sensory cortex map-
ping. Stereotactic and Functional Neurosurgery, 91(5):314–322, 2013.

[137] J Gross, L Timmermann, J Kujala, R Salmelin, and A Schnitzler. Properties
of MEG tomographic maps obtained with spatial filtering. 19(4):1329–1336.

[138] T. Bardouille and B. Ross. MEG imaging of sensorimotor areas using inter-trial
coherence in vibrotactile steady-state responses. NeuroImage, 42(1):323–331,
2008-08.

[139] A. Kanno, N. Nakasato, Y. Nagamine, and T. Tominaga. Non-transcallosal
ipsilateral area 3b responses to median nerve stimulus. Journal of Clinical
Neuroscience, 11(8):868–871, 2004-11.

[140] Douglas Cheyne, Andreea C. Bostan, William Gaetz, and Elizabeth W. Pang.
Event-related beamforming: A robust method for presurgical functional map-
ping using MEG. Clinical Neurophysiology, 118(8):1691–1704, 2007-08.

[141] M. Tynan R. Stevens, Ryan CN DArcy, Gerhard Stroink, David B. Clarke,
and Steven D. Beyea. Thresholds in fMRI studies: Reliable for single subjects?
Journal of neuroscience methods, 219(2):312–323, 2013.

[142] S Taulu and J Simola. Spatiotemporal signal space separation method for
rejecting nearby interference in MEG measurements. Physics in Medicine and
Biology, 51(7):1759–1768, 2006-04-07.



137

[143] Gnther Grabner, AndrewL. Janke, MarcM. Budge, David Smith, Jens Pruess-
ner, and D.Louis Collins. Symmetric atlasing and model based segmentation:
An application to the hippocampus in older adults. In Rasmus Larsen, Mads
Nielsen, and Jon Sporring, editors, Medical Image Computing and Computer-
Assisted Intervention MICCAI 2006, volume 4191 of Lecture Notes in Com-
puter Science, pages 58–66. Springer Berlin Heidelberg, 2006.

[144] Matthew T. Sutherland and Akaysha C. Tang. Reliable detection of bilateral
activation in human primary somatosensory cortex by unilateral median nerve
stimulation. 33(4):1042–1054.

[145] Susan M. Bowyer, Toya Fleming, Margaret L. Greenwald, John E. Moran,
Karen M. Mason, Barbara J. Weiland, Brien J. Smith, Gregory L. Barkley, and
Norman Tepley. Magnetoencephalographic localization of the basal temporal
language area. Epilepsy & Behavior, 6(2):229–234, 2005-03.

[146] N. Tanaka, H. Liu, C. Reinsberger, J. R. Madsen, B. F. Bourgeois, B. A. Dworet-
zky, M. S. Hamalainen, and S. M. Stufflebeam. Language lateralization rep-
resented by spatiotemporal mapping of magnetoencephalography. American
Journal of Neuroradiology, 34(3):558–563, 2013-03-01.

[147] Kensuke Sekihara, Maneesh Sahani, and Srikantan S. Nagarajan. Localization
bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG
source reconstruction. NeuroImage, 25(4):1056–1067, 2005-05.

[148] Massimo Fornasier and Francesca Pitolli. Adaptive iterative thresholding al-
gorithms for magnetoencephalography (MEG). Journal of Computational and
Applied Mathematics, 221(2):386–395, 2008-11.

[149] Hooman Alikhanian, J. Douglas Crawford, Joseph F. X. DeSouza, Douglas O.
Cheyne, and Gunnar Blohm. Adaptive cluster analysis approach for functional
localization using magnetoencephalography. Frontiers in Neuroscience, 7, 2013.

[150] C. Amblard, E. Lapalme, and J.-M. Lina. Biomagnetic source detection by
maximum entropy and graphical models. 51(3):427–442.

[151] J. J. Pillai. The evolution of clinical functional imaging during the past 2
decades and its current impact on neurosurgical planning. American Journal
of Neuroradiology, 31(2):219–225, 2010.

[152] Christoph Stippich, Maria Blatow, and Karsten Krakow. Presurgical functional
MRI in patients with brain tumors. In Christoph Stippich, editor, Clinical
functional MRI: Presurgical functional neuroimaging, pages 88–126. Springer-
Verlag, 2007.



138

[153] Kuan H. Kho, Geert-Jan M. Rutten, Frans SS Leijten, Arjen van der Schaaf,
Peter C. van Rijen, and Nick F. Ramsey. Working memory deficits after re-
section of the dorsolateral prefrontal cortex predicted by functional magnetic
resonance imaging and electrocortical stimulation mapping: Case report. Jour-
nal of Neurosurgery: Pediatrics, 106(6):501–505, 2007.

[154] G.J.M. Rutten, Nick F. Ramsey, P.C. van Rijen, and C.W.M. van Veelen. Re-
producibility of fMRI-determined language lateralization in individual subjects.
Brain and language, 80:421–437, 2002.

[155] David J. McGonigle. Testretest reliability in fMRI: or how i learned to stop
worrying and love the variability. NeuroImage, 62(2):1116–1120, 2012.

[156] S. Gonzalez-Ortiz, L. Oleaga, T. Pujol, S. Medrano, J. Rumia, L. Caral, T. Bo-
get, J. Capellades, and N. Bargallo. Simple fMRI postprocessing suffices for
normal clinical practice. American Journal of Neuroradiology, 34(6):1188–1193,
2013-06-01.

[157] Stephen C. Strother, Jon Anderson, Lars Kai Hansen, Ulrik Kjems, Rafal Kus-
tra, John Sidtis, Sally Frutiger, Suraj Muley, Stephen LaConte, and David Rot-
tenberg. The quantitative evaluation of functional neuroimaging experiments:
the NPAIRS data analysis framework. NeuroImage, 15(4):747–771, 2002.

[158] Stephen La Conte, Jon Anderson, Suraj Muley, James Ashe, Sally Frutiger,
Kelly Rehm, Lars Kai Hansen, Essa Yacoub, Xiaoping Hu, David Rottenberg,
and Stephen Strother. The evaluation of preprocessing choices in single-subject
BOLD fMRI using NPAIRS performance metrics. NeuroImage, 18:10–27, 2003.

[159] Janusch Blautzik, Daniel Keeser, Albert Berman, Marco Paolini, Valerie Kirsch,
Sophia Mueller, Ute Coates, Maximilian Reiser, Stefan J. Teipel, and Thomas
Meindl. Long-term test-retest reliability of resting-state networks in healthy
elderly subjects and patients with amnestic mild cognitive impairment. Journal
of Alzheimer’s Disease, 34(3):741–754, 2013.

[160] James T. Voyvodic, Jeffrey R. Petrella, and Allan H. Friedman. fMRI activa-
tion mapping as a percentage of local excitation: Consistent presurgical motor
maps without threshold adjustment. Journal of Magnetic Resonance Imaging,
29(4):751–759, 2009-04.

[161] Tynan Stevens, Ryan D’Arcy, Steven Beyea, and David Clarke. Retrospective
registration for improved localization of cortical stimulation on mr images. In
International Society for Magnetic Resonance in Medicine, 2012.

[162] PJ Besl and ND McKay. A method for registration of 3-d shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.



139

[163] Dara S. Manoach, Elkan F. Halpern, Todd S. Kramer, Yuchiao Chang, Don-
ald C. Goff, Scott L. Rauch, David N. Kennedy, and Randy L. Gollub. Test-
retest reliability of a functional MRI working memory paradigm in normal and
schizophrenic subjects. American Journal of Psychiatry, 158(6):955–958, 2001.

[164] Olivier Maza, Bernard Mazoyer, Pierre-Yves Herv, Annick Razafimandimby,
Sonia Dollfus, and Nathalie Tzourio-Mazoyer. Reproducibility of fMRI activa-
tions during a story listening task in patients with schizophrenia. Schizophrenia
research, 128(1):98–101, 2011.

[165] Kenneth P. Eaton, Jerzy P. Szaflarski, Mekibib Altaye, Angel L. Ball, Brett M.
Kissela, Christi Banks, and Scott K. Holland. Reliability of fMRI for studies of
language in post-stroke aphasia subjects. Neuroimage, 41(2):311–322, 2008.

[166] Giannantonio Spena, Antonella Nava, Fabrizio Cassini, Antonio Pepoli, Mar-
cella Bruno, Federico DAgata, Franco Cauda, Katiuscia Sacco, Sergio Duca,
Laura Barletta, and Pietro Versari. Preoperative and intraoperative brain map-
ping for the resection of eloquent-area tumors. a prospective analysis of method-
ology, correlation, and usefulness based on clinical outcomes. 152(11):1835–
1846.

[167] Peter Grummich, Christopher Nimsky, Elisabeth Pauli, Michael Buchfelder,
and Oliver Ganslandt. Combining fMRI and MEG increases the reliability of
presurgical language localization: A clinical study on the difference between
and congruence of both modalities. NeuroImage, 32(4):1793–1803, 2006-10.

[168] Helmut Kober, Christopher Nimsky, Martin Mller, Peter Hastreiter, Rudolf
Fahlbusch, and Oliver Ganslandt. Correlation of sensorimotor activation with
functional magnetic resonance imaging and magnetoencephalography in presur-
gical functional imaging: A spatial analysis. NeuroImage, 14(5):1214–1228,
2001-11.

[169] K Singh. Task-related changes in cortical synchronization are spatially coinci-
dent with the hemodynamic response. NeuroImage, 16(1):103–114, 2002-05.

[170] John Sanders, Jeffrey D. Lewine, and William Orrison. Comparison of pri-
mary motor cortex localization using functional magnetic resonance imaging
and magnetoencephalography. Human Brain Mapping, 4:47–57, 1996.

[171] Hiroaki Shimizu, Nobukazu Nakasato, Kazuo Mizoi, and Takashi Yoshimoto.
Localizing the central sulcus by functional magnetic resonance imaging and
magnetoencephalography. Clinical Neurology and Neurosurgery, 99:235–238,
1997.

[172] Christoph Stippich, Peter Freitag, Jan Kassubek, Helmut Kober, Klaus Schef-
fler, Rudiger Hopfengartner, Deniz Bilecen, Ernst Radu, and Jurgen Vieth.
Motor, somatosensory and auditory cortex localization by fMRI and MEG.
NeuroReport, 9:1953–1957, 1998.



140

[173] Timothy PL Roberts, Elizabeth A. Disbrow, Heidi C. Roberts, and Howard A.
Rowley. Quantification and reproducibility of tracking cortical extent of activa-
tion by use of functional MR imaging and magnetoencephalography. American
journal of neuroradiology, 21(8):1377–1387, 2000.

[174] F. Moradi, L.C. Liu, K. Cheng, R.A. Waggoner, K. Tanaka, and A.A. Ioannides.
Consistent and precise localization of brain activity in human primary visual
cortex by MEG and fMRI. NeuroImage, 18(3):595–609, 2003-03.

[175] Pasi I Tuunanen, Martin Kavec, Veikko Jousmki, Jussi-Pekka Usenius, Riitta
Hari, Riitta Salmelin, and Risto A Kauppinen. Comparison of BOLD fMRI and
MEG characteristics to vibrotactile stimulation. NeuroImage, 19(4):1778–1786,
2003-08.

[176] M. Brunetti, P. Belardinelli, M. Caulo, C. Del Gratta, S. Della Penna, A. Fer-
retti, G. Lucci, A. Moretti, V. Pizzella, A. Tartaro, K. Torquati, M. Olivetti Be-
lardinelli, and G.L. Romani. Human brain activation during passive listening
to sounds from different locations: An fMRI and MEG study. Human Brain
Mapping, 26(4):251–261, 2005-12.

[177] Rebecca L. Billingsley-Marshall, Trustin Clear, W. Einar Mencl, Panagiotis G.
Simos, Paul R. Swank, Disheng Men, Shirin Sarkari, Eduardo M. Castillo, and
Andrew C. Papanicolaou. A comparison of functional MRI and magnetoen-
cephalography for receptive language mapping. Journal of Neuroscience Meth-
ods, 161(2):306–313, 2007-04.

[178] Kyousuke Kamada, Yutaka Sawamura, Fumiya Takeuchi, Shinya Kuriki, Ken-
suke Kawai, Akio Morita, and Tomoki Todo. Expressive and receptive lan-
guage areas determined by a non-invasive reliable method using functional
magnetic resonance imaging and magnetoencephalography. Neurosurgery,
60(2):296???306, 2007-02.

[179] Mia Liljestrm, Annika Hultn, Lauri Parkkonen, and Riitta Salmelin. Comparing
MEG and fMRI views to naming actions and objects. Human Brain Mapping,
30(6):1845–1856, 2009-06.

[180] Elizabeth W. Pang, Frank Wang, Marion Malone, Darren S. Kadis, and Eliza-
beth J. Donner. Localization of broca’s area using verb generation tasks in the
MEG: Validation against fMRI. Neuroscience Letters, 490(3):215–219, 2011-03.

[181] Yingying Wang, Scott K. Holland, and Jennifer Vannest. Concordance of MEG
and fMRI patterns in adolescents during verb generation. Brain Research,
1447:79–90, 2012-04.

[182] Silke Klamer, Adham Elshahabi, Holger Lerche, Christoph Braun, Michael Erb,
Klaus Scheffler, and Niels K. Focke. Differences between MEG and high-density
EEG source localizations using a distributed source model in comparison to
fMRI. Brain Topography, 28(1):87–94, 2015-01.



141

[183] Stephen C. Strother. Evaluating fMRI preprocessing pipelines. Engineering in
Medicine and Biology Magazine, IEEE, 25(2):27–41, 2006.

[184] Joshua I. Breier, Panagiotis G. Simos, George Zouridakis, and Andrew C. Pa-
panicolaou. Lateralization of activity associated with language function using
magnetoencephalography: a reliability study. Journal of Clinical Neurophysi-
ology, 17(5):503–510, 2000.

[185] Krzysztof J. Gorgolewski, Amos J. Storkey, Mark E. Bastin, Ian Whittle, and
Cyril Pernet. Single subject fMRI testretest reliability metrics and confounding
factors. Neuroimage, 69:231–243, 2013.

[186] Dongwook Lee, Stephen M. Sawrie, Panagiotis G. Simos, Jeff Killen, and
Robert C. Knowlton. Reliability of language mapping with magnetic source
imaging in epilepsy surgery candidates. Epilepsy & Behavior, 8(4):742–749,
2006-06.

[187] Panagiotis G. Simos, Shirin Sarkari, Eduardo M. Castillo, Rebecca L.
Billingsley-Marshall, Ekaterina Pataraia, Trustin Clear, and Andrew C. Papan-
icolaou. Reproducibility of measures of neurophysiological activity in wernicke’s
area: A magnetic source imaging study. Clinical Neurophysiology, 116(10):2381–
2391, 2005-10.

[188] Rebecca L. Billingsley-Marshall, Panagiotis G. Simos, and Andrew C. Papani-
colaou. Reliability and validity of functional neuroimaging techniques for iden-
tifying language-critical areas in children and adults. Developmental neuropsy-
chology, 26(2):541–563, 2004.

[189] Bruce Fischl, David H. Salat, Evelina Busa, Marilyn Albert, Megan Dieterich,
Christian Haselgrove, Andre van der Kouwe, Ron Killiany, David Kennedy,
Shuna Klaveness, Albert Montillo, Nikos Makris, Bruce Rosen, and Anders M.
Dale. Whole brain segmentation: automated labeling of neuroanatomical struc-
tures in the human brain. Neuron, 33(3):341–355, 2002-01-31.

[190] Mark Jenkinson, Christian F. Beckmann, Timothy E. J. Behrens, Mark W.
Woolrich, and Stephen M. Smith. FSL. NeuroImage, 62(2):782–790, 2012-08-
15.

[191] Elizabeth W. Pang, William Gaetz, James M. Drake, Samuel Strantzas,
Matthew J. MacDonald, Hiroshi Otsubo, and O. Carter Snead. Patient with
postcentral gyrectomy demonstrates reliable localization of hand motor area
using magnetoencephalography. Pediatric Neurosurgery, 45(4):311–316, 2009.

[192] Andrei I. Holodny, Michael Schulder, Wen Ching Liu, Joseph A. Maldjian, and
Andrew J. Kalnin. Decreased BOLD functional MR activation of the motor and
sensory cortices adjacent to a glioblastoma multiforme: implications for image-
guided neurosurgery. American journal of neuroradiology, 20(4):609–612, 1999.



142

[193] Axel Schreiber, Ulrich Hubbe, Sargon Ziyeh, and Jrgen Hennig. The influence of
gliomas and nonglial space-occupying lesions on blood-oxygen-leveldependent
contrast enhancement. American journal of neuroradiology, 21(6):1055–1063,
2000.


